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Motivation

* The recent work [1] provides physicists a useful tool to
search for new physics with neural networks on low-
dimensional datasets at the cost of a huge
computational demand.

Contributions

* The theoretical framework introduced in [1] has been
generalized to different loss functions and machine

learning models

e Starting from the algorithm proposed in [1], a new,
efficient algorithm based on kernel methods has been

introduced with a hyperparameters tuning procedure

* a Python module named m14hep has been created to
train neural networks and kernel methods on local
machines or a farm of computers
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Remarks
* Inspired by [1]

* Unbalanced classification problem with No = N1

» Multiple training with N¢oy = O(100)
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e Hyperparameter tuning (see [2]) + performance
assessment on different datasets

Improved Nystrom centers selection

Treatment of systematic uncertainties

Improved parallelization on multiple GPU machines
Extended strategy to other applications and domains
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*Library available at https://falkonml.github.io/falkon/
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