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Problem setting

• The recent work [1] provides physicists a useful tool to 
search for new physics with neural networks on low-
dimensional datasets at the cost of a huge 
computational demand.

Contributions

References

• The theoretical framework introduced in [1] has been 
generalized to different loss functions and machine 
learning models 

• Starting from the algorithm proposed in [1], a new, 
efficient algorithm based on kernel methods has been 
introduced with a hyperparameters tuning procedure 

• a Python module named ml4hep has been created to 
train neural networks and kernel methods on local 
machines or a farm of computers

Credits

• LHC-like data of increasing dimensionality (1 to 28 
features) produced by software simulations 

• Benchmarked with different types of putative new 
physics signals

Figure 1 - CMS experiment, Geneva, Switzerland

Figure 1 - home.cern 

Figure 2 - (Left) Sashkin - stock.adobe.com, (Right) notebookcheck.it 

*Library available at https://falkonml.github.io/falkon/
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• Delivered comparable performance to [1] with orders 
of magnitude gain in terms of training time and 
computational requirements

Future work

Experiments

• Complete pipeline for data analysis 
• A theory-grounded hyperparameter tuning procedure 
• Improved Nyström centers selection 
• Treatment of systematic uncertainties 
• Improved parallelization on multiple GPU machines 
• Extended strategy to other applications and domains 

Figure 2 - Farm of computers vs a single laptop
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Idea hypothesis testing

2. Toy experiments:

3. p-value: 

Remarks

• Inspired by [1] 

• Unbalanced classification problem with 

• Multiple training with 

• Neural networks vs LogFalkon*

Custom loss

W.B.C.E.

Physics-informed
weights

• Hyperparameter tuning (see [2]) + performance 
assessment on different datasets
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