

Sept. 2022, Milan, Italy

Learning new physics efficiently with nonparametric methods

Letizia M.^{1,2}, Losapio G.¹, Rando M.¹, Grosso G.^{2,3,4}, Wulzer A.³, Pierini M.⁴, Zanetti M.^{2,3}, Rosasco L.^{1,5,6}

¹ MaLGa, DIBRIS, U. Genoa - ² INFN - ³ U. Padua - ⁴ CERN - ⁵ MIT - ⁶ IIT

Motivation

• The recent work [1] provides physicists a useful tool to search for new physics with neural networks on lowdimensional datasets at the cost of a huge computational demand.

Contributions

- The theoretical framework introduced in [1] has been generalized to different loss functions and machine learning models
- Starting from the algorithm proposed in [1], a new, efficient algorithm based on kernel methods has been introduced with a hyperparameters tuning procedure
- a Python module named ml4hep has been created to train neural networks and kernel methods on local machines or a farm of computers

Problem setting $\{x_i\}_{i=1}^{\mathcal{N}_0} \sim p(x|0), N(0)$ $\{x_j\}_{j=1}^{\mathcal{N}_1} \sim p(x|1), N(1)$ **Experimental** Reference Data Model $\mathbf{p}(\mathbf{x}|\mathbf{0}) = \mathbf{p}(\mathbf{x}|\mathbf{1}) ?$

Idea hypothesis testing

Data

Figure 1 - CMS experiment, Geneva, Switzerland

- LHC-like data of increasing dimensionality (1 to 28 features) produced by software simulations
- Benchmarked with different types of putative new physics signals

Experiments

Neural networks vs LogFalkon*

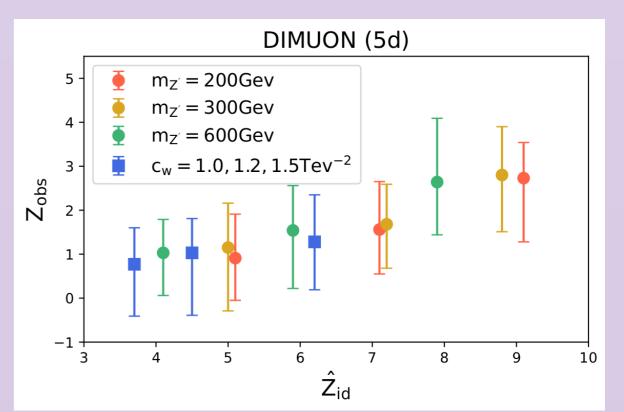
Custom loss

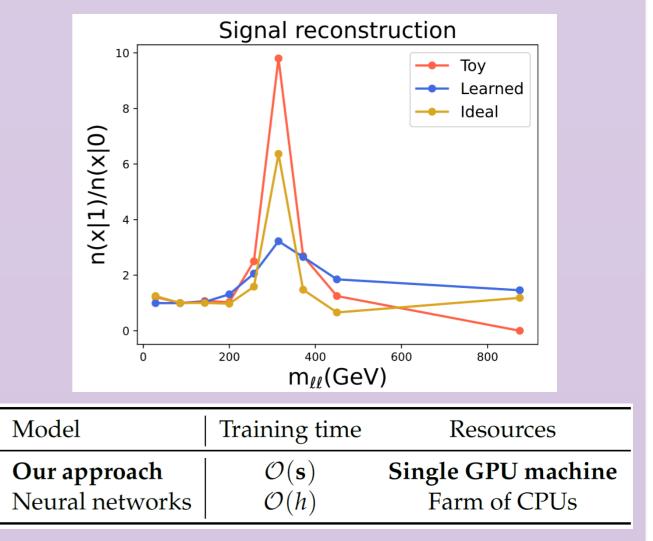
$$\ell(f(x), y) = (1 - y) \frac{N(R)}{\mathcal{N}_{\mathcal{R}}} \sum_{x \in \mathcal{R}} (e^{f(x)} - 1) - yf(x)$$

W.B.C.E.

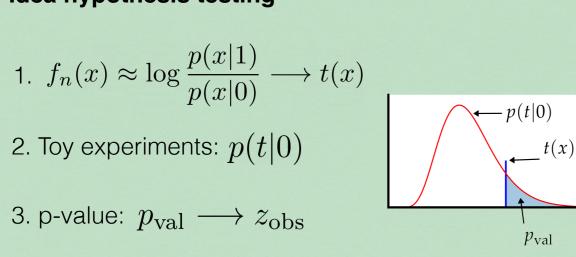
$$\ell(f(x), y) = y \beta_1 \log \left(1 + e^{-f(x)}\right) + (1 - y) \beta_0 \log \left(1 + e^{f(x)}\right)$$
Physics-informed weights
$$\beta_1 = \frac{\mathcal{N}_0}{\mathcal{N}(0)} , \ \beta_0 = 1 \ \longrightarrow \ f_n \approx \log \left[\frac{n(x|1)}{n(x|0)}\right]$$

Results



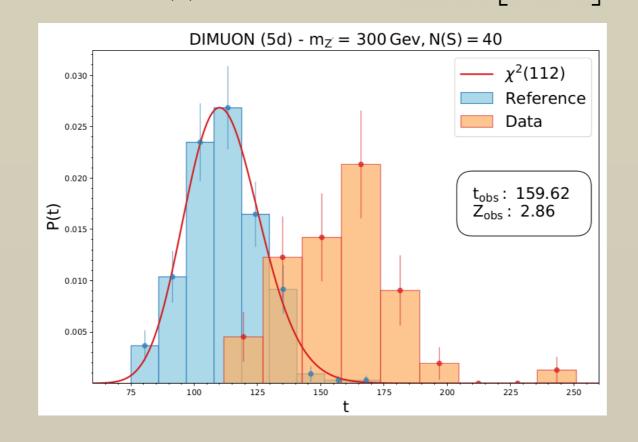


Conclusion



Remarks

- Inspired by [1]
- Unbalanced classification problem with $\mathcal{N}_0 \gg \mathcal{N}_1$
- Multiple training with $N_{\rm tov} = \mathcal{O}(100)$



• Hyperparameter tuning (see [2]) + performance assessment on different datasets

Figure 2 - Farm of computers vs a single laptop

• Delivered comparable performance to [1] with orders of magnitude gain in terms of training time and computational requirements

Future work

- Complete pipeline for data analysis
- A theory-grounded hyperparameter tuning procedure
- Improved Nyström centers selection
- Treatment of systematic uncertainties
- Improved parallelization on multiple GPU machines
- Extended strategy to other applications and domains

References

[1] d'Agnolo, R. T., et. al. (2021). Learning multivariate new physics. The European Physical Journal C, 81(1), 1-21.

[2] Letizia, M., et. al. (2022). Learning new physics efficiently with nonparametric methods. arXiv preprint arXiv:2204.02317.

Credits

Figure 1 - home.cern

Figure 2 - (Left) Sashkin - stock.adobe.com, (Right) notebookcheck.it

*Library available at https://falkonml.github.io/falkon/

Contacts

Gianvito Losapio

gvlosapio@gmail.com, gvlosapio.netlify.com