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Abstract: The increasing share of renewables in the energy mix and the global-
ization of the energy market introduce new challenges in the problem of controlling
power grids. The recent series of competitions Learning To Run a Power Network
have promoted the use of Reinforcement Learning to aid human dispatchers in man-
aging power grids. So far the proposed solutions significantly limit the action space
and rely on either a single agent overseeing the entire grid or multiple independent
agents operating at the substation level. In this work, we propose a different ap-
proach in which we first decompose the problem by means of a domain-agnostic
algorithm that estimates correlations between state and action components en-
tirely based on data. Highly correlated state-action pairs are grouped together to
create simpler, possibly independent sub-problems. On this decomposition we can
run a distributed learning processes in which each agent interacts with its own
sub-problem, reaching a partial solution with reduced computational and data re-
quirements. We then compare the performance of the proposed algorithm with the
one of a centralized approach.
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1. Introduction

Power grids are complex infrastructures that allow the transportation of energy from production plants to end
consumers, with the use of thousands of kilometers of powerlines. Transmission System Operators (TSOs)
such as Reseau de Transport d’Electricitée (RTE) in France work to provide a constant supply of electricity,
balancing the demand of the users with the offer of the production. In doing so, they must ensure that the
power flowing through the transmission lines does not exceed an upper limit called thermal limit, that depends
on the properties of the metals that compose the powerline. If too much power is forced and the thermal limit
is exceeded for a long period, the materials can be damaged, fail in service and be disconnected. [8]. Operating
a power grid involves routing power around the network in order to avoid overloads that may lead to blackouts,
while minimizing the economic and energetic costs of the operations.
Nowadays, the operation is carried on by dispatchers, highly trained engineers that can perform several different
actions, called remedial actions on the grid, such as:

• Operations on the lines
◦ Switching : changing the interconnections between lines to redirect flows.

• Operations on generators
◦ Redispatching : increase or decrease the amount of energy that fossil fuels generators inject in the

grid;
◦ Curtail : limiting the amount of energy that renewable generators inject in the grid.

• Operations on storages
◦ Storing : modifying the amount of energy absorbed by the storages

The challenge is becoming increasingly complex as the energy production shifts from fossil fuels, which offer
predictable and manageable output, to renewable sources, whose production is highly unpredictable and can
only be reduced, leading to significant energy waste. The globalization of the energy market further complicates
the issue as power grids expand and become more interconnected.
This increasing complexity motivated researchers to investigate whether Artificial Intelligence (AI) models could
be used as assistants to dispatchers in operating power networks in the most efficient and secure way. AI a
branch of computer science that focuses on developing algorithms capable performing tasks that typically require
human cognitive functions. These models analyze large amounts of data to identify patterns and improve their
performances. The more data they process, the more they are able to adapt to new and unseen scenarios. AI
tools can serve as powerful assistants by making split-second decisions and providing human dispatchers with
immediate remedial actions to tackle grid issues.
Since 2019, French TSO, RTE, has been organizing a series of online challenges called Learning To Run a
Power Network (L2RPN) [8]. The goal of the challenges is to encourage the use of AI, and in particular
Reinforcement Learning (RL) for the assistance of human dispatchers in addressing critical situations that
may arise when operating power grids. The aim of these challenges has been to promote investigation into the
network operation problem in a competitive context. For that purpose, RTE developed the open-source Grid2op
simulator [4] to model and study a large class of power system-related problems and facilitate the development
and evaluation of agents that act on power grids. The Grid2op simulator is a flexible tool, allowing researchers
to accurately simulate power system dynamics for different networks while interacting with the environment
through different types of actions.
Over the last few years, more and more funtionalities have been added to Grid2op. Starting from a small,
oversimplified grid, the enviroments evolved, including storages and constraints that make the problem closer
to reality. During the several editions of the challenge, various RL algorithms have been proposed to tackle
the problem. In particular a branch of RL which makes use of Deep Neural Networks (Deep RL) has shown
promising results. So far, centralized algorithms that consider the grids as a whole have been explores. However,
As the grids grow larger the amount of samples and training time required by these centralized models becomes
prohibitive. AI literature calls this phenomenon "curse of dimensionality". A different kind of approach, in
which multiple agents address different parts of the problem in a distributed (and possibly independent) way,
may help to mitigate the curse of dimensionality.
Power grid management is also one of the topics of interest of AI4RealNet, a project that receives funds from
European Union’s Horizon Europe Research and Innovation programme1. Its main goal is to address critical
systems that can be modelled as networks (power grids, railway, and air traffic management). These systems
are traditionally operated by humans, and the aim of the project is to develop AI solutions that can be used as
assistants to complement and augment human abilities in dealing with increasingly complex problems.
This thesis takes place in the context of the partnership of Politecnico di Milano’s partnership with AI4RealNet,
and it fits into one of the areas of the project, sharing its final objective of optimizing power grid operations,
by means of innovative RL approaches.

1https://ai4realnet.eu/.
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1.1. Contributions

Our proposal is to decompose large MDP problems into sub-instances, by means of a clustering algorithm that
makes use of Mutual Information as metric to discriminate whether two state or action variables are correlated
or not. We group together the variables that are highly correlated to each other and define possibly independent
sub-problems.
We define a Distributed Multi Agent RL scenario in which multiple agents independently tackle different sub-
problems. Their partial solutions are then combined to solve the overall problem. While this approach sacrifices
the Markovian Property and the assurance of finding an optimal solution, it significantly accelerates the learning
process. As a result, agents need less time and data to arrive at a satisfactory solution.
In power grid operation, this translates in segmenting the networks into sub-grids that are operated by a
dedicated agent.
The code used to collect the results we provide in this work is available on GitHub at: https://github.com/
ThatBerra/thesis_AI4realnet_distributed

1.2. Thesis Structure

This thesis is structured as follows: Section 2 presents previous works that tackle similar problems, Section 3
provides the theoretical notions applied in our solution, in Section 4 a description of the problem is detailed,
in Section 5 we propose our algorithm, alongside the associated pseudocode, Section 6 shows the results of our
experiments and finally Section 7 concludes the work, proposing future research topics.

2. Related Works

RL for power grids. Most of the RL methods developed to control power grids are related to the L2RPN
competitions. An overview of the solutions proposed during the first edition is reported in [12]. The winning
solutions of the last two editions are presented in [5] and [2], respectively. All the solutions proposed so far
severely restrict the action space and are based on a single agent acting on the entire grid.
Subsequent works have further explored RL algorithms beyond the scope of the competitions yet with the
same limitations described above [3, 9]. On the other hand, [16] proposed for the first time a multi-agent RL
approach as a solution to reduce the action space by creating an agent for each substation and specializing
it on its own topological actions only. A rule-based method based on the line overloads decides which agent
has to act. Similarly, [10] presents a hierarchy of agents with different combinations of high-level and low-level
agents. However, these approaches still suffer two main limitations: (i) the observation space is not reduced as
each agent observes the entire grid, (ii) the number of low-level agents is related to the number of configurable
substations, thus requiring a large number of agents on grids of increasing size.
With our method, we would like to overcome such limitations by distributing the learning process across a
smaller number of agents, each taking care of a specific sub-problem that has been identified in the data-
driven decomposition of the original problem (for instance, controlling a zone of the power grid with several
substations). Each agent has thus a reduced action space and, at the same time, can only observe the relevant
state variables of its own sub-problem, resulting in a simpler learning problem.

Power grid segmentation. The segmentation of large-scale power grids into zones is crucial for human
operators when controlling the grid in real-time. Power grids are usually segmented into static zones that are
redefined every year to study the grid efficiently in real-time. Typically, the segmentation has been computed
using analytical methods that have been more extensively explored in the field of power systems [11]. Only
recently, a data-driven approach using machine learning has been proposed [13]. By simulating the effects of a
specific intervention of human operators (i.e., line disconnections on the other lines), the authors were able to
create an adjacency matrix of a directed graph of lines on which they executed a graph clustering algorithm.
The resulting clusters were used to segment the power grid, showing interesting results in different realistic
scenarios.
Our method has in principle a similar objective of power grid segmentation but it is designed to be more general,
i.e., to segment the entire state and the action spaces with respect to any kind of intervention and independently
from the physical configuration of the grid. Most notably, our method is meant to be domain-agnostic and widely
applicable to any complex decision problem.
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3. Theoretical Background

3.1. Mutual Information

The basic assumption of our method for problem decomposition is that there is some correlation among the
random variables describing the problem. We will measure this correlation with a nonlinear measure called
Mutual Information (MI). This metric was introduced in information theory by Shannon in 1948 and it is a
non-parametric measure of relevance, able to capture linear and non-linear dependencies among two variables.
The intuition behind MI is to quantify how much knowing one variable reduces the uncertainty about another
variable [17].
Knowing the real distributions of the two variables, MI can be exactly computed as:

I(S′
i, Xj) := E

[
log

(
p(s′i, xj)

p(s′i) p(xj)

)]
(1)

However, it is not usually the real distributions of the variables are known, so most of the times MI is estimated
from data. A survey on the most used estimators for MI is presented in [17].

Mixed MI Estimator. A suited choice for our problem is the estimator proposed in [6], which implements
a mechanism to discriminate whether the variable is continuous or discrete and deals with them in a different
way. They estimate the Mutual Information between a pair of random variables X,Y by taking a datasets of
realizations {Xi, Yi}Ni=1. For each point in the dataset, their algorithm computes the k-nearest neighbor distance
from the other points. If this distance is zero, then the data point is in a discrete component, otherwise it could
be either continuous or mixed. Precisely, the procedure is detailed in Algorithm 1

Algorithm 1 Mixed Random Variable Mutual Information Estimator [6]
In: {Xi, Yi}Ni=1, where Xi ∈ X and Yi ∈ Y
Parameter: k ∈ Z+ - number of nearest neighbors

1: for i = 1 to N do
2: ρi,xy := the k smallest distance among [di,j := max{||Xj −Xi||, ||Yj − Yi||}, j ̸= i]
3: if ρi,xy = 0 then
4: k̃i := number of samples such that di,j = 0
5: else
6: k̃i = k
7: end if
8: nx,i := number of samples such that ||Xj −Xi|| ≤ ρi,xy
9: ny,i := number of samples such that ||Yj − Yi|| ≤ ρi,xy

10: ϵi := ψ(k̃i + log(N)− log(nx,i + 1)− log(ny,i + 1)
11: end for
12: return Î(X;Y ) := 1

N

∑N
i=1 ϵi

3.2. Clustering

Clustering [18] is the problem of dividing a dataset into natural groups, called clusters, such that points that
are similar are grouped together, while points that are dissimilar are assigned to different clusters. It is an
Unsupervised Learning approach, meaning that it does not need a training dataset to learn the parameters but
it just looks for an internal structure of the provided data.
There are many ways to evaluate how good a clustering is but since we will deal with data organized in matrices,
supposed that we have a ground-truth of the real clustering, we will use the Frobenius norm of the difference
between the estimated clustering matrix and the ground-truth. Calling the former ÎG and the latter IG , the
metric is computed as:

ℓ
(
IG , ÎG

)
=
∥∥∥IG − ÎG

∥∥∥2
F
=
∑
i,j

(
IG [i, j]− ÎG [i, j]

)2
. (2)
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3.3. Reinforcement Learning

Power grid operations can be easily modeled as a sequential decision problem. At any time, indeed, dispatchers
operating a grid must ensure that energy demand requested by loads must be satisfied by the production
of generators, while ensuring that the thermal limit of each power line is not exceeded. To do this, human
dispatchers at any time monitor the state of the grid and take remedial actions if they are needed.
RL is the learning paradigm suited to handle decision processes and it involves figuring out the best actions
to take in different situations to maximize a numerical reward. Instead of being told which actions are best
in every situation, the learner must experiment and discover which actions lead to the highest rewards. The
problem is formalized as the optimal control of Markov Decision Processes [15].

Markov Decision Processes. An MDP is a tuple:

M := ⟨S,A, P,R,H⟩

where
• S is the set of all possible states of the environment;
• A is the set of all actions that can be performed;
• P : S×A×S → [0, 1] is a stochastic function that models the transition from one state of the environment

to another, as consequence of an action. More in details, P (s′|s, a) is the probability of moving to state
s′ when performing action a in state s;

• R : S × A → R is the reward function, specifically R(s, a) is the reward the agent gets when performing
action a in state s;

• H ∈ N is the time horizon of the problem.
MDPs are characterized by the Markov property, which ensures that both the transition probability and the
reward function only depend on the current state and the chosen action. This means that the history of
transitions is not to be taken into account when estimating a new one.
RL agents at each time step sense the state of the environment and choose an action that affects it. Moreover,
the agent must have one or multiple goals that depend on the state of the environment. The environment
receives the action, modifies its state according to it and produces a numeric reward that represent this goal.
Agents explore MDP learning from their experience which actions yield higher rewards, in other words, which
actions lead towards states close to the goal.

Policies A policy is a function that maps at each t ∈ [H], each state to a (possibly stochastic) action,
formally π = (πt(a|s))t∈[H]. The objective of the agent is to find a policy that maximises the expected sum of
the rewards obtained from the environment over the time horizon H. The expected return of a policy is given
by its value functions (vπ and qπ).

• State-value function vπ(s): it denotes the expected return starting from state s and then following
policy π:

vπ(s) := Eπ

[ H∑
k=0

γkRt+k+1

∣∣∣St = s, π
]
.

• Action-value function qπ(s, a): it denotes the expected return starting from state s, taking action a
and then following policy π

qπ(s, a) := Eπ

[ H∑
k=0

γkRt+k+1

∣∣∣St = s,At = a, π
]
.

The parameter γ, which takes values 0 ≤ γ ≤ 1, is called discount rate and it defines how much the agent
is interested in future rewards. When γ = 0 the agent is said to be "myopic", as it is concerned only about
immediate rewards. With γ approaching 1, the agent is more interested in future rewards.

Optimality. Solving an RL means to find a policy with a high reward over the time horizon. When dealing
with MDPs, it is possible to exactly define the concept of optimal policy π∗. We call optimal state-value function
the highest state-value function v∗(s) = maxπ vπ(s) and optimal action-value function the highest action-value
function q∗(s, a) = maxπ qπ(s, a)
Any policy that achieves the optimal state-value function for every state s ∈ S is called optimal policy. Even if
the optimal functions are unique, there may be multiple policies that achieve them, and they are to be considered
equivalent.
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3.3.1 Deep RL

RL can be enhanced with Neural Networks, that are used to handle high-dimensional data, automate feature
extraction, learn intricate patterns and scale on bigger and more complex environments. Deep RL algorithms
make use of Deep Neural Networks to approximate policies and value functions, and they have proven to be
quite powerful tool that are able to tackle complex tasks as robotic control, playing video games and operating
power grids.
A simple, yet stable and efficient Deep RL algorithm is Proximal Policy Optimization (PPO) [14]. It applies an
actor-critic approach, meaning that it is composed by two networks. The "actor" observes the environment and
selects the actions to be played at any time, while the "critic" estimates the value function and gives a feedback
to the actor on how good were its choices. PPO implements a mechanism called clipping of the objective
function, which allows to update policies with the biggest step possible, while avoiding drastic updates that
may cause a collapse of the learning process.

3.3.2 Multi-Agent RL (MARL)

RL also works in multi-agent scenarios, in which no more a single agent but a set of agents interact with the
environment by means of policies to maximize a reward function over a time horizon. Agents select individual
actions, that together form a joint action. The action modifies the state of the environment according to its
transition function and then each agent receives an individual reward, together with an individual observation.
There are many paradigms of MARL [7]. They can be classified based on how the training is carried on:

• Independent learning : other agents are considered as part of the environment.
• Centralized Training with Decentralized Execution: each agent has its own action space, and a local

observation, but the training is done in a centralized way.
• Fully centralized learning : all agents act according to a unique centralized policy.
• Fully decentralized learning : each agent learns its own independent policy, without any coordination.

And based on how agents interact with each other:
• Communication-based learning : agents share information while learning, so that they are able to coordi-

nate their actions.
• Team learning : agents learn to act as a team to reach a common goal.
• Competitive learning : often modeled as zero-sum games, in which agents learn by competing against each

other.
• Hybrid approaches: they combine features from multiple paradigms to enhance their performances.

MARL challenges. MARL can be a powerful tool, but it also introduces some challenges in the process
[1]:

• Non-stationarity: a crucial aspect of MARL is that, given the fact that agents act with changing policies,
the problem becomes non-stationary. Agents may adapt to other agents policies in a potential loop which
could lead to unstable learning. MARL algorithms must be able to handle this type of non-stationarity.

• Optimality of policies: if it is intuitive to define optimality for single-agent RL as the policy that achieves
the maximum expected return, in multi-agents the notion of optimality must take into account other
agents’ policies.

• Credit assignment: along with determining which past action contributed to a received reward, MARL
must consider also the problem of finding out which agent’s action contributed to the reward.

• Scaling: an increasing number of agent acting in the environment determines an increasing number of
possible actions, and may lead to exponential growth of possible action combinations.

Distributed RL We use the Multi-Agent RL paradigm to define a Distributed RL approach, in which the
original problem is not multi agent itself, but it is decomposed so that its parts can be handled independently
by a number of agents, whose joint solutions form a valid action of the original, non decomposed problem.

3.4. Power Grids

Power generation is shifting towards renewable energy production from solar panels or wind turbines. Compared
to fossil fuel combustion these sources of energy have a reduced impact on the environment, as their CO2
emissions are much lower. However, they are highly unpredictable, because the amount of energy produced
depends on meteorologic factors. A new class of power grid users is becoming increasingly diffused. They are
called prosumers and they own both loads and generator, meaning that they can either inject power in the
grid or demand power from it. Lastly, energy market is shifting towards a globalized and more interconnected
European grid.

7



Figure 1: L2RPN case 14 power grid.

All these factor can be huge improvement in power grid efficiency and sustainability. However, they come
to a price: from the point of view of dispatchers, operating a power network to balance energy demand and
production, while keeping the grid safe becomes a very complex problem that requires coordinated decisions
over time. To help dispatchers in taking decisions, RTE developed a simulated environment, called Grid2op,
that casts the problem of power grid operations into a Markov Decision Process, so that it can be solved by
means of Reinforcement Learning algorithms.

3.4.1 Grid Elements

Grids can be modeled as networks akin to the one in Figure 1. We can recognize several different elements, on
which different types of action can be performed.

Generators. The green pentagons are generators. They can be either fossil fuels generators or renewable
generators. On the former class dispatcher can perform a redispatching action, meaning that they can rise or
lower the amount of power produced by the generator. Such actions are costly as they must take into account
the economic cost of energy production. The only action that can be performed on renewable generators is
curtailment, that means reducing the setpoint of the generator, so that just a given percentage of the total
amount of power produced is injected in the grid. Since it is not possible to reduce the power produced by a
renewable generator such as a solar panel, because it depends on the radiation of the sun, to avoid lines to be
overloaded by excess power injected into the grid when it is not needed, the only way to operate on a renewable
generator is to reduce the power injected into the grid. By doing so, however, some energy is produced but not
used, and this implies a waste of energy.

Loads. The orange triangles are loads, representing the demand of the energy market. There are no actions
that can be performed specifically on loads, their power levels must be treated as constraints.

Batteries. Batteries allow to store excess power when it is needed, acting as loads absorbing the overpro-
duction. In alternative, if more power than the amount that generators can produce is demanded by the grid,
batteries can act as generators, releasing some of the energy they stored to satisfy the grid’s needs. Batteries
adds flexibility to the network, but are quite complex to handle.

Substations. Loads, generators and storages are connected to substations, which are linked together by
power lines. Substations can be seen as a set of wires, called buses. Each element of the grid can is connected
to a substation on one of the buses. Connections of powerlines within substations define the grid topology,
namely which elements of the grid are interconnected with each other. Topology actions can be performed on
substation, by setting elements such as loads, generators and storages, or power lines on either one of the buses.
This can be useful when a line is particularly overloaded, as it can create a node split as shown in Figure 2.

8



Figure 2: A simplistic network on the left, showing a simple network state, with no direct link between
S1 and S4 since the dotted line indicates the line is switched out. The figure on the right shows a
splitting action at substation node S3 which now creates an indirect link between node S1 and S4.[8]

These actions have no cost because they are just re-routing power flows inside the grid. However no storage or
load can be isolated, so there are some substation configuration that must be avoided.

Power Lines. Power lines connect the substation, carrying power flows between elements of the grid. They
are characterized by a thermal limit that must not be exceeded, otherwise the line is automatically disconnected
to avoid breakdowns. Action on lines are connection or disconnection.

4. Problem description

In this section we present the problem we are facing, describing it in its multiple components. First we propose
an overview of the main elements of the simulator, then we detail the formulation of the MDP and the challenges
behind the decomposition, casting it into power grids scenarios.

4.1. Simulator

Grid2op [4] models the power grid scenario as an MDP, defining an environment, described by a network such
as the one in Figure 1. In particular:

• Substations are modeled as if they had just two buses, even if in reality substations can have tons of
them.

• Line connection and disconnection actions are available. Developers suggest to avoid to disconnect lines
at any time and to reconnect disconnected lines as soon as possible.

• The default configuration of each environment sees all elements connected together on the first bus of all
substations.

• For each generator a range is defined to limit the magnitude of redispatching actions that can be performed
on that generator.

• Batteries were introduced in later edition of the challenge and have constraints similar to the ones of the
generators.

A complete observation of the environment is available at each time step. It is composed by, among other
information, the power line capacities, the power level of generators and loads and the configuration of the
substations.
A wide choice of actions is proposed, to model many different remedial actions human dispatchers can perform.
Given the huge dimension of observation and action vectors, in defining our problem we will consider just a
fraction of them.

4.2. MDP definition

We need to formulate our problem as an MDP M, as described in Section 3.3. Grid2op module helps in this,
modeling complete and detailed observations and actions for each environment.

9



State. We reduce our observation to the capacities of the power lines. Capacities ρi are described as the
observed power flows through the line divided by the thermal limit. Calling n the number of lines in the grid,
the state of the MDP is s = (ρ1, ρ2, . . . , ρn), with the capacity of each line being a state variable si. The state
space is S ⊆ Rn, however, we are interested in keeping each ρ < 1: when the capacity of a line exceeds 1, the
line is overloaded and the environment will automatically disconnect it.

Action. Since actions on loads, generators and batteries are quite expensive in terms of money and energy
waste, many works suggest to focus on topology actions on substations [2], [5]. Our action vector is composed
by the substations of the grid a = (sub1, sub2, . . . , subm), with m being the number of substations, and each
substation being an action variable ai. Each substation has a possible number of configuration, hence the
action space of action variable ai is a set Ai containing all valid topological changes on the substation. Not all
configurations are valid as some of them can isolate loads or generators. The number of valid topology changes
depends on the number of connections on the substation, in particular, substations with 3 or less connections
have just two equivalent valid configurations, hence it is useless to define actions on them.

4.3. Problem Decomposition

As the energy market transitions to a more interconnected European grid, managing these expanding networks
becomes increasingly complex. Specifically, research must address the curse of dimensionality, which refers to
the challenge that algorithms require larger datasets and more time to find optimal solutions as the problem’s
scale increases. We suggest breaking down the problem into smaller, independent sub-problems. This approach
sacrifices the Markovian property, meaning there’s no assurance of finding an optimal solution. However, by
allowing different agents to work on portions of the entire problem and then combining their solutions, a sub-
optimal but valid solution can be achieved more quickly and with a smaller dataset.

4.3.1 MDP decomposition

Let us consider a MDP where states and actions are multidimensional, formally S ⊆ Rn and A ⊆ Rm, with
n,m ∈ N. At each time step t ∈ H, the state vector will be st = (st1, s

t
2, ..., s

t
n). We call each sti state variable. In

a similar way, the action vector at time step t ∈ H is denoted as at = (at1, a
t
2, ..., a

t
m) and each ati is called action

variable. We want to investigate whether the problem can be divided into (possibly independent) sub-problems.
Each sub-problem is described by a subset of the state variables and a subset of the action variables. The
original problem M would be decomposed in k problems:

M = (Mj)
k
j=1,

Each one of them being defined as:
Mj =

(
S̃j , Ãj , Pj , H, rj

)
The global transition probability and the global policy will be decomposed into independent transition proba-
bilities Pj : S̃j × Ãj × S̃j → [0, 1].
Once the problem is decomposed multiple agents are instantiated and trained, each one targeting a specific sub-
problem. At each time step, each agent receives only a portion of the global observation from the environment
and chooses an action from a reduced action set, according to its own sub-problem. The reward is split among
sub-problems as well, so that the agents receive the portion of the reward relative to the action they chose.
Dealing with reduced problem, each agent finds a good partial solution in less time and with less data.

4.3.2 Grid segmentation

On grids, this means finding a segmentation of the power network, such that each segment can be considered
as a standalone power grid. An example is proposed in Figure 3.
In the picture we can recognize three areas, divided by the colors of the power lines. The segmentation of the
grid is purely based on topology, we want to provide a domain-agnostic method that allows to decompose any
type of MDP with data collected by interacting with the MDP itself. Once the problem is decomposed, we can
solve it in a distributed way, having a dedicated agent dealing with each sub-problem.
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Figure 3: L2RPN 2023 segmentation.

5. Algorithm Proposal

5.1. Decomposition

We split the problem by means of a clustering algorithm. Clustering is a form of unsupervised learning, which
given a dataset aims at dividing it into groups called clusters such that elements that are similar to each other
are grouped together. A key factor in clustering is choosing an appropriate similarity or distance function to
discriminate which elements are to be in the same cluster.

5.1.1 Variable Correlation

In the case of a RL problem as described before, we want to group together state and action variables that
strongly influence each other over time, while keeping separated variables that have lower impact on each other.
Ideally, if a problem can be perfectly decomposed, one should be able to find a clustering such that variables
that are not grouped together have no impact on each other. Given a database of state action transitions on
M, called trajectory, collected with a sufficiently explorative policy, i.e. a policy that tries random actions with
equal probabilities,

τ =
(
st0 ,at0 , st1 ,at1 , st2 ,at2 , . . . , stH

)
,

We want to measure how much each component of the state st and the action at vectors, is important in defining
the values assumed by the components of the state vector st+1 at later time steps. To do so, we rearrange the
collected data in a database that has the form:

D =
{
(s,a, s’)

}T
t=1

,

We can divide the dataset into two parts. We call input variables the state and action variables at present time
t:

X = (S1, S2, . . . , Sn, A1, A2, . . . , Am) ∈ Rn+m,

and target variables the state variables at the next time step t+ 1:

S′ = (S′
1, S

′
2, . . . , S

′
n) ∈ Rn

Each element of X and S′ can be considered as a random variable with its own probability function. The goal
is to compute the statistical influence between each pair of variables (Xi, S

′
j). We quantify this influence by

estimating the Mutual Information between the two variables from the data collected during the interactions
with the MDP. The use of estimators for statistical measures allows to approximate the measure even when
it cannot be exactly computed due to the fact that the exact distributions of the variables are not known.
However, this usually introduces bias. We collect the estimates of the Mutual Information on a n × (n +m)
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Algorithm 2 MI estimation
In: n - number of state variables
In: m - number of action variables
In: δ - threshold on Mutual Information
Out: MI - matrix of pairwise mutual information
Out: bin_MI - binary matrix of correlation

1: Initialize MI ∈ Rn×(n+m)

2: Run explorative policy on environment, collect history data D =
{
(s’, s, a)

}T
t=1

3: S ′ =
{
(s′1, s

′
2, . . . , s

′
n)
}T
t=1

4: X =
{
(s1, s2, . . . , sn, a1, a2, . . . , am)

}T
t=1

5: for i = 0 to n do
6: for j = 0 to n+m do
7: Estimate mutual information m̂i(s′i, xj)
8: Shuffle s′i
9: Estimate bias m̃i(s′i, xj)

10: MI[i, j] = m̂i(s′i, xj)− m̃i(s′i, xj)
11: bin_MI[i, j] = 1 if MI[i, j] > δ, 0 otherwise
12: end for
13: end for
14: return MI, bin_MI

matrix. On that matrix we apply a clustering algorithm to group together variables which are highly correlated
with each other. The resulting clustering represents the problem decomposition.
The algorithm for data extraction and MI estimation is proposed in Algorithm 2.
The line capacities that we selected as state variables, assume continuous values ρi ∈ R ∀ i = 1, . . . , n. On the
other hand, the action variables are categorical, taking values in discrete sets depending on the corresponding
substation. Since we are computing the Mutual Information on mixtures of continuous and discrete variables,
we need an estimator that can deal with them both. We adopted for this work the estimator proposed by [6],
that is described in details in Section 3.1
This estimator Î computed on the collected data is likely to yield some bias, that we try to remove by computing
the Mutual Information Ĩ shuffling the target variable values in the history so that the new quantity measures
the noise in the data, then we remove the bias by subtracting it from the estimated Î. The threshold δ is used
to determine whether the variables are correlated, if the MI is higher than the threshold, or not, if the MI is
lower.

5.1.2 Clustering

In a first version of the algorithm, the clustering of state and action variables is found by means of a depth first
search called alternatively on the rows and the columns of the binary matrix. The indices are then rearranged
so that the binary Mutual Information matrix becomes (pseudo) block-diagonal. The blocks in the resulting
matrix are the clusters representing the sub-problems.
Once a general clustering is found, an iterative algorithm is called to try and expand or reduce the blocks. This
considers one block at a time and explores the cells of the matrix adjacent to it, expanding it to include one
more row or column according to a score that is computed on the number of ones outside the block. The result
of this algorithm is the decomposed MDP.
To evaluate the goodness of our estimation, if a ground truth of the real clustering is available, we compute
a metric which tries to give an approximation on the error on the performance of the algorithm. We selected
the Frobenius norm, as detailed in Equation 2, of the difference between the estimated matrix and the ground
truth.

5.2. Distributed RL

The clustering process divides state and action variables into groups, each one of which is in fact a sub-problem.
In grids, this means that we segment the network by placing the substations in different clusters. Once we do
that we can define a distributed agent for each sub-grid. Each agent acts independently from the others on its
area of the grid and it implements a PPO algorithm to solve the problem.
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Figure 4: Decision flow of our actor
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Since Grid2op does not provide multi-agent scenarios, and moreover it does not allow to perform more than
one topological action per time step, we implemented an actor that is composed by a High-Level Agent, a
Middle-Level substation picker Agent and a Low-Level PPO Agent for each sub-problem. The High-Level
Agent coordinates the calls to the PPO agents and the interaction with the environment, using the structure
proposed by [16] in their hierarchical approach. As shown by the diagram in Figure 4, The High-Level Agent
decides if an action is needed, calls the Middle-Level Agent that selects the most crucial power line that needs
intervention and calls the low level agent of the cluster the line belongs to. The low level agent receives a masked
observation and based on its PPO network returns an action. During training, PPO agents are periodically
updated to find an optimal solution to the sub problem.

Safe observations. An observation is considered safe if all power line capacities are below a given threshold,
that we set at 0.9. As suggested by Grid2op developers and verified by various studies [12], it is good practice
not to act if the grid is in a safe state, but take only remedial actions when the grid is at risk.

Disconnected lines. It may happen that a line is disconnected. This is caused by a power overflow in
the previous step ρt−1 > 1 or by the action of an adversary (introduced in "l2rpn_wcci_2022"). After a
couple of timestep with any line disconnected the simulation terminates with a grid breakdown. To avoid this
is mandatory that the agent tries to reconnect any disconnected line before attempting anything else.

Remedial action. If the grid is not safe but no lines are disconnected the agent must decide which lines, and
hence which substations needs intervention. The middle-level agent ranks the lines according to their capacity
values and then the high-level agent takes the substation with the highest number of critical incident lines. It
retrieves the cluster the substation belongs to and calls the act function of the corresponding PPO agent. The
agent has an internal mask that is applied to the observation, so that the agent only "sees" the power lines
connected to the substations within its cluster.

6. Experiments

6.1. MDP Decomposition

Decomposing our problem M means to divide the grid in clusters, grouping together substations whose changes
of topology have a good impact on the same power lines. We use Algorithm 2 to find an appropriate division.

6.1.1 Custom Environment

We tested the validity of our clustering algorithm on an MDP that can be perfectly decomposed. We defined
a custom environment, with n = 5 state variables and m = 3 state variables. We divided the problem in the
following clusters:

(1) : S̃1 = (s1, s3, s5), Ã1 = (a1, a2)

(2) : S̃2 = (s2, s4), Ã2 = (a3)

Given a state s and an action a, each state variable at the next time step s′i will assume a value extracted
randomly from the ones of the variables in the same cluster. For instance, s′1 will assume with the same
probability the value of either one of {s1, s3, s5, a1, a2}. Figure 5 shows the ground truth binary matrix ( 5a)
and the pseudo block-diagonal one ( 5b).
State variables are initialized randomly as 0 or 1; at each iteration each action variable is randomly selected in
the interval [0, 1] to consider also a continuous scenario. Collecting T = 105 samples on this environment and
setting the threshold δ as the 0.5th quantile of each column, we were able to perfectly reconstruct the original
decomposition of the problem. The Frobenius norm between the custom ground truth and our estimation,
divided by the size of the matrices, is 0.02. This means that only one element out of 40 is different in our
estimation. The estimated clustering matches the original one despite this different element. Figure 6 shows
the results of the algorithm.

6.1.2 L2RPN Case 14

We run our algorithm on the simplest environment proposed by Gri2op, "l2rpn_case14_sandbox", which is
described by the grid in Figure 1. We focused on the substations, and for each substation we collected a dataset
by playing a policy that at each time step randomly selects a configuration among the available ones for that
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(a) Custom environment relation matrix. (b) Custom environment pseudo block-diagonal.

Figure 5: Binary matrices of the custom environment

(a) Custom environment estimated MI. (b) Custom environment estimated pseudo block-
diagonal.

Figure 6: Output of the clustering algorithm on custom environment

particular substation. We used these datasets to compute the columns of our mutual information matrix. We
chose to apply a varying threshold, in particular we used the 0.7th quantile of each column.
A ground truth of the division of this power grid is not available, however, we refer to the work of [13], in which
a domain-expert analysis of the same grid is performed and a possible segmentation of the network in two areas
is proposed. We explored different choices quantiles and we observed that he result with the 0.7th quantile
agrees with that segmentation.

(1) : S̃1 = (line0, line1, line2, line3, line4, line5, line6),

Ã1 = (sub1, sub4, sub2)

(2) : S̃2 = (line7, line8, line9, line11, line12, line13, line14, line15, line16, line19, line20),

Ã2 = (sub3, sub5, sub8, sub12)

Figure 7 shows how the segmentation appears on the "l2rpn_case14_sandbox" powergrid. In dividing the grid
into areas we did not consider substations for which there are no available actions.
Figure 8 shows the raw Mutual Information matrix on the left (Figure 8a) and the matrix after it underwent
the process of thresholding and block-diagonalization on the right (Figure 8b). We can recognize the two blocks
highlighted on this binary matrix. The first is in the upper-left corner, the second in the lower-right one. The
dimensionality of the matrix is reduced because all non-configurable substations were removed and some values
of MI between lines and substations remain quite low. Since we are focusing in constructing an agent, in the
following sections we will divide the matrix considering only the substations, each agent will see all the power
lines connected to its substations.
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Figure 7: Case 14 optimal segmentation

(a) Case 14 Mutual Information matrix. (b) Binary pseudo block-diagonal.

Figure 8: Estimated matrices

6.2. Distributed RL applied to power grid operations

6.2.1 Data preparation

Each Grid2op environment comes with a number of time series also called chronics in the documentation, that
contain data to modify the input parameters of power flows between a given time step and the next one. They
can be used to simulate the transitions during training and validation of agents.
The environment we chose, L2RPN case 14, provides 1004 time series, each one corresponding to a simulation
of up to 8064 time steps. We kept 904 chronics for training and left the other 100 for validation. The training
of the agents was carried on by iterating multiple times on the training dataset, in order to collect data for a
higher number of iterations.

6.2.2 Reward and metrics

Reward. Grid2op provide a wide choice of rewards, able to capture different aspects of the power grid,
alongside energy costs and waste. We chose the one called CloseToOverflowReward. It is strictly correlated to
our actions and observations, as it depends on the capacities of the power line. Intuitively, it is higher when
the grid is in a safe state, while it has its minimum when there are disconnected lines. In numbers:

CloseToOverflowReward(obs) =


1 if ρi < 0.9 ∀i = 1, . . . , n_lines
0.5 if exactly one ρ > 0.9

0 if more than one ρ > 0.9

(3)
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We chose this particular reward because we want our agent to find good topology actions able to re-route power
flows within the grid when a power line is overloaded, avoiding further congestion.

Performance metrics. We defined a performance to evaluate our models that computes the percentage
of survived time steps over the total number of time steps provided. For a single time series, it is computed as:

r =
n_survived_steps

total_steps
(4)

Computing on an entire iteration on the training dataset, it becomes:

R =

∑n_epochs
i=1 ri
n_epochs

(5)

,
where total_steps = 8064 and n_epochs = 904
The number of survived time steps is found by counting the time steps an agent is able to operate on the grid
in the given time series, up until the grid goes to a breakdown and returns done. This number is always at
least equal to the number of steps in which the environment is safe and it grows up to 1 if the agent is able to
complete the simulation without a breakdown.

6.2.3 PPO parameter exploration

PPO comes with a set of parameters that can be modified to best suit the problem at hand. The first ones that
we explored were buffer and batch size. The buffer size is the number of interactions with the environment the
model collects before an update. Since most of the times our model does not act because the environment is in a
safe state, in our case the buffer size is the number of topology action the agent performs before updating. The
batch size, instead, is the number of training samples used in one update iteration. Each update is composed of
10 iterations and we selected four pairs of buffer size and batch size to compare. Figure 9 shows the performances
for each pair during 100 iterations over the training set.
We can observe how the models with a smaller buffer size, the ones that are updated more frequently, early in
the training reach a plateau, in which the performance does not improve, even though the model continues to
be updated. We investigated this fact and looking into PPO forward method, we found that the vector of log
probabilities from which the index of the action is sampled, at some points in the training contains an element
with a value near 1 and all the other close to 0. This way the model stops the exploration of different actions
and it always plays the ones it considers to be the best, even if it is sub-optimal, as we can observe from the
orange line corresponding to the agent with buffer_size = 32.
Increasing the buffer size, we can observe that the training seems to be much slower, as in the 100 iterations there
is no significant improvement but a couple of peaks that are not exploited. However, with these hyperparameter
choices, the models do not get stuck on a policy as the other two did.

6.2.4 Comparison with centralized approach

We selected the buffer and the batch size that obtained the best results during training and with the same
setup we trained two other models, to compare the performance. The first implements a centralized approach,
in which there is no division in cluster, and the only agent at each time observes the whole grid and can
perform an action on any substation, the second implements a distributed approach, with the same scheme of
our original model. In this version, Low-Level Agents receive the observation of the whole grid, and can act
only on the subset of substations in their cluster. In the following we refer to this as complete observations
model, as opposed to our independent observations proposal. Figure 10 shows the performances of the three
models during training.
By looking at the plot, we can see how both the centralized approach and the one with the complete observations
reach the plateau in the first iterations of the training and from there they stabilize on a much lower performance
than the one of the model with independent observations. This is promising because it shows that our proposed
model is able to learn how to operate on the grid, even in a distributed way, in which Low-Level Agents
have a partial observation of the grid, and with this particular choice of parameters, it even seems to top the
performance of a centralized approach that can observe the entire environment.

Learning Rate. To overcome the problem of the plateau we used two approaches. The first was to wrap
PPO with an epsilon policy, that with probability ϵ selected a random action and with probability 1− ϵ selected
the output of PPO. We tried ϵ = 0.7 and ϵ = 0.4, but in both cases the approach was ineffective and the model
did not learn.
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Figure 9: Comparison between different choices of batch_size and buffer_size on distributed models.

Figure 10: Comparison between centralized and distributed approaches.

In the second approach we modified the learning rate of PPO, reducing it from 3 × 10−4 to 3 × 10−5. This
choice seems to limit the plateau problem, as neither the centralized model nor the distributed one reaches it
in the first 25 iterations. However, the best performance reached by the distributed algorithm is lower than the
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Figure 11: Comparison between centralized and distributed approaces with reduced learning rate.

plateau reached with an higher learning rate, while the centralized model achieves a much higher performance,
even if it dorps at a certain point during the training. Figure 11 summarizes the performances of the two models
over 25 iterations.

6.2.5 Validation

Using the validation dataset of 100 chronics that we defined in Section 6.2.1, we evaluated the performance of the
best models we obtained on new unseen data. We selected the models that achieved the highest performances
over the training set. In particular we loaded the centralized model trained with learning rate 3×10−5 from the
13th iteration, in which it survived about 59% of the total time steps. As for the distributed model, we loaded
the one with learning rate 3× 10−4, after it reached the plateau, in which it survived roughly 37− 38% of the
time steps.
We run those two models on the validation dataset, computing for each chronic the metric as in Equation 4,
and we plot the results on a barplot which shows three bars for each chronic. On the left in blue is shown
the performance of the centralized model, on the right there is the one achieved by the distributed one, while
the middle bar represent the performance of the DoNothingAgent provided by Grid2op, that do not act on the
environment. The last 10 chronics are shown in Figure 12, The other ones are provided in the plots in Appendix
A
The evaluation of the models on this independent dataset reflects the performances observed during training.
The centralized model performs almost always better than the distributed one, which in some chronics is able
to survive the same number of steps, while in other is much more similar to a DoNothingAgent.

7. Conclusions

This work proposes a distributed Reinforcement Learning paradigm to handle power grid operation problems.
With this approach, a group of agents acts independently on a decomposed version of the original problem, to
improve existing solutions for controlling power grids, while reducing time and sample complexity.
The division of the original problem into sub-problem is performed by means of a domain-agnostic algorithm for
Markov Decision Process decomposition. Even without explicit knowledge of the problem, it is able to group the
state and action variables in clusters based on the estimated values of mutual information between them, which
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Figure 12: Model Evaluation. Chronics 80-100

provides theoretically grounded insights on how much pairs of variables are informative about each other. Our
algorithm’s results align with domain-expert analysis on a power grid benchmark obtained using an open-source
simulator.
A distributed Reinforcement Learning that makes use of PPO as base learner is developed. An exploration
of the parameters is performed to verify how performance and complexity varies depending on the different
choices. The models are trained and tested in comparison with centralized approaches and show promising
results, demonstrating potential applicability in power grid operation problems.

Future works Future works can explore correlation metrics different from mutual information, possibly
reducing the number of samples required by its estimators. More robust clustering methods can be developed,
so that variables can be grouped into blocks even in larger environments and matrices, while minimizing the
number of non related variables within groups and related ones outside of them. A theoretical analysis is also
required to understand how the choice of the policy for data collection influences the data distribution and how
the choice of the threshold for building the adjacency matrix can be automatized.
Regarding distributed Reinforcement Learning, future research could investigate how algorithms different from
PPO perform in this scenario and whether some form of communication or collaboration among agents can be
applied to handle the fact that sub-problems are not independent.
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A. Appendix A

Figure 13: Model Evaluation. Chronics 1-19.

Figure 14: Model Evaluation. Chronics 20-39.
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Figure 15: Model Evaluation. Chronics 40-59.

Figure 16: Model Evaluation. Chronics 60-79.
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Abstract in lingua italiana

L’aumento delle rinnovabili nei mix energetici e la globalizzazione del mercato dell’energia rendono più com-
plicato il problema del controllo di reti di distribuzione elettrica. Le recenti competizioni Learning To Run a
Power Network hanno stimolato l’utilizzo di Reinforcement Learning come supporto per gli operatori umani
nella gestione delle reti. Le soluzioni proposte finora prevedono dei limiti stringenti nello spazio delle azioni
e utilizzano agenti in grado di osservare l’intera rete oppure di operare a livello della singola stazione. Nel
nostro lavoro, proponiamo un approccio diverso, nel quale dapprima decomponiamo il problema tramite un
algoritmo in grado di stimare direttamente dai dati la correlazione tra le componenti di stato e azione in modo
indipendente dal dominio di applicazione. Coppie di variabili stato-azione molto correlate tra loro vengono
raggruppate in modo da creare sottoproblemi più semplici e indipendenti. Su questa decomposizione definiamo
un processo di apprendimento distribuito, nel quale ogni agente interagisce solamente con il suo sottoproblema,
raggiungendo una soluzione parziale richiedendo meno tempo e dati. Alla fine, confrontiamo i risultati ottenuti
da questo algoritmo con quelli di un approccio centralizzato.

Parole chiave: Reti di distribuzione elettrica, Reinforcement Learning, Algoritmi distribuiti, Mutua
Informazione
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