
Executive Summary of the Thesis

Distributed Reinforcement Learning for Power Grid Operations

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Author: Davide Beretta

Advisor: Prof. Marcello Restelli

Co-advisors: Gianvito Losapio, Marco Mussi, Prof. Alberto Maria Metelli

Academic year: 2023-2024

1. Introduction
Power grids operations consist in providing a
constant supply of electricity, balancing the de-
mand of the users with the offer of the produc-
tion. In doing so, operators must ensure that
the power flowing through the transmission lines
does not exceed an upper limit called thermal
limit, otherwise blackouts may arise. The prob-
lem is challenging and it is becoming increas-
ingly complex as the production shifts towards
renewables. For this reason, French TSO, RTE,
organized a series of challenges called Learning
To Run a Power Network (L2RPN) to promote
the application of Reinforcement Learning (RL)
approaches to help power grid operators, called
dispatchers, in the management of power grids.
They developed an open-source simulator, called
Grid2op [1], to model and study a large class of
power system-related problems and facilitate the
development and evaluation of agents that act
on power grids. While the winners of those com-
petitions focus on centralized algorithms that
tackle the problem as a whole, we propose a
distributed approach, in which the problem is
first decomposed in simpler sub-problems and
then solved by multiple agents, one for each sub-
problem, with reduced time and sample com-
plexity.

2. Problem Formulation
2.1. MDP definition
We formulate power grid operations problem as
a Markov Decision Process (MDP). Since we are
interested in keeping the power flowing through
the power lines within a certain limit, we fo-
cus on the portion of the observation describing
the capacities ρ of the lines, namely the ratio
between the actual power flowing through the
line and its thermal limit. Calling n the num-
ber of lines in the grid, the state of the MDP is
s = (ρ1, ρ2, . . . , ρn). As actions we only consider
topology actions, as they are able to re-route
power flows within the grid without any par-
ticular cost, while other types of actions, such
as redispatching, are quite expensive in terms
of money and energy waste. Substations are
composed of a set of wires, called buses. The
elements of the grid (generators, loads, batter-
ies and lines) are connected to a substation on
one of the buses. Topology actions consist in
moving the elements from a bus to another and
they must satisfy some constraints, so that not
all substations can be modified and some of the
possible configurations are not valid. The action
vector of the MDP is composed by the config-
urable substations, and each element ai has its
own action space Ai containing all valid topo-

1



Executive summary Davide Beretta

logical changes on the substation.

2.2. Problem decomposition
Given an MDP M defined over a time hori-
zon H, at each time t ∈ [0, H] the state vec-
tor is st = (st1, s

t
2, . . . , s

t
n) and the action vec-

tor is at = (at1, a
t
2, . . . , a

t
m). The goal is to de-

compose M into k independent sub-problems
Mj = (S̃j , Ãj , Pj , H, rj). The global transition
probability and the global policy will be decom-
posed as well into independent transition prob-
abilities Pj : S̃j × Ãj × S̃j → [0, 1].
When dealing with power grids, this means find-
ing a segmentation of the network, such that
each area can be considered as a standalone
power grid.

3. Algorithm Proposal
3.1. Decomposition
We want to group together state and action
variables that strongly influence each other over
time, while keeping separated variables that
have lower impact on each other. We run a suffi-
ciently explorative policy, i.e. a policy that tries
random actions with equal probabilities, on the
MDP M, and we collect a trajectory of state
action transitions:

D = {(s,a, s′)}Ht=1

We can divide the obtained dataset into input
variables, which are the components of the state
and the action vector at present time t:

X = (S1, S2, . . . , Sn, A1, A2, . . . , Am) ∈ Rn+m,

And target variables, which are the state vari-
ables at next time step t+ 1:

S′ = (S′
1, S

′
2, . . . , S

′
n) ∈ Rn

Each element of X and S′ is a random variable
with its own probability function. We quan-
tify the statistical influence between each pair
(Xi, S

′
j) by means of a metric called Mutual In-

formation, that measures the reduction in un-
certainty that how much knowing one variable
reduces the uncertainty about another variable
[2]:

I(S′
i, Xj) := E

[
log

(
p(s′i, xj)

p(s′i) p(xj)

)]
(1)

Computing the exact value is not possible, as it
requires the actual probability distributions to
be known, hence we make use of an estimator,
proposed by [2], which is able to deal with both
continuous and discrete variables.
Since estimators of statistical measures are likely
to yield bias, we try to approximate the errors by
computing the Mutual Information on a dataset
in which the realizations of the target variables
are shuffled. Then we subtract this noise from
the original estimates. We collect the obtained
values in a matrix n× (n+m) in which each en-
try contains the MI between the target variable
on the row and the input variable on the column.
Given the matrix of the MIs, and a threshold δ,
we define a binary matrix that contains 1, mean-
ing that the variables are correlated, where the
value of MI is greater than the threshold, and
0, meaning that the variables are uncorrelated,
where the value of MI is lower than the thresh-
old.

3.2. Clustering
In this first version of the algorithm, clustering is
performed in place on the MI matrix. Alternat-
ing rows and columns, we perform a depth-first
search on the binary matrix, rearranging the in-
dices of rows and columns so that the matrix
becomes pseudo block-diagonal. The blocks in
the result are the clusters representing the sub-
problems.
Automatic detection of blocks is done by sequen-
tial expansion/contractions of each block along
the diagonal with the objective of minimizing
the amount of 0s inside every block. The result
of this algorithm is the decomposed MDP.
Provided that we have a ground-truth of the
original clustering, we can assess the perfor-
mance of this algorithm by computing the
Frobenius norm of the difference between the
obtained matrix and the ground-truth. Dividing
the obtained value for the number of elements in
the matrices, we obtain the error rate in recon-
structing the original matrix.

3.3. Distributed RL
The clustering process divides state and action
variables into groups, each one being in fact a
sub-problem. We define a learning process in
which each sub-problem is handled by a dedi-
cated agent. In our grid scenario this means that

2



Executive summary Davide Beretta

each agent acts independently on a subset of the
configurable substations, observing a portion of
the power lines of the grid.
Since Grid2op does not support multi-agent sce-
narios, we implemented an actor that is com-
posed by a High-Level Agent, a Middle-Level
substation picker Agent and a Low-Level PPO
Agent for each sub-problem. The High-Level
Agent coordinates the calls to the PPO agents
and the interaction with the environment, us-
ing the structure proposed by [4] in their hi-
erarchical approach. Upon receiving an obser-
vation, the High-Level Agent verifies if there is
any disconnected lines. If it is so, it returns an
action to reconnect them. If all lines are con-
nected, it checks whether the grid is safe, mean-
ing that there are no lines with ρ > 0.9. If the
state of the grid is safe, it returns an action that
does nothing, otherwise it invokes the Middle-
Agent, which returns a ranking of the substa-
tions according to the number of critical inciden-
tal lines. The High-Level Agent takes the most
critical substation and invokes the act function
of the Low-Level PPO Agent corresponding to
the cluster the substation belongs to, providing
a masked observation, so that the agent only ob-
serves its portion of the grid.

4. Experiments
The code used for the experiments is available on
GitHub at: https://github.com/ThatBerra/
thesis_AI4realnet_distributed

4.1. MDP Decomposition
Custom Environment. We tested the pro-
posed algorithm on a custom MDP, designed to
be perfectly decomposable. It has n = 5 state
variables and m = 3 action variables. the first
cluster is: (1) : S̃1 = (s1, s3, s5), Ã1 = (a1, a2),
while the second is: (2) : S̃2 = (s2, s4), Ã2 =
(a3). Given a state s and an action a, each state
variable at the next time step s′i will assume a
value extracted randomly from the ones of the
variables in the same cluster.
We colleced T = 105 samples on this environ-
ment and we set an adaptive threshold δ as
the 0.5th quantile of each column. With these
parameters we were able to perfectly recon-
struct the original decomposition of the prob-
lem. The Frobenius norm between the custom
ground truth and our estimation, divided by the

Figure 1: Case 14 optimal segmentation.

size of the matrices, is 0.02. This means that
only one element out of 40 is different in our es-
timation. The estimated clustering matches the
original one despite this different element.

L2RPN case 14. We run our algorithm on
the simplest environment provided by Grid2op,
"l2rpn_case14_sandbox", which has n = 20
lines and m = 14 substations, of which just
7 are configurable. We focused on those sub-
stations and for each one of them we collected
a dataset, running a policy that at each time
step randomly selects a configuration among the
available ones. With this data we were able to
compute the columns of the MI matrix. We set
a different threshold for each column, and we
explored different choices, comparing the result-
ing segmentation with the one proposed by [3] in
their domain-expert analysis of the grid. Using
as threshold the 0.7th quantile of each column we
were able to obtain a segmentation that agrees
with the one proposed in their paper.

4.2. Distributed RL applied to power
grid operations

Given a dataset composed of 1004 time series,
or chronics, each one corresponding to a simu-
lation of up to 8064 time steps, we divided it
in two part, using 904 chronics for training and
the remaining 100 for validation. The reward
selected for training the agents is called Close-
ToOverflowReward and it returns 1 if the grid is
safe, 0.5 if there is one line is close to overflow,
with ρ > 0.9 and zero if the number of lines close
to overflow is greater than one. To visualize the
performance of the models we defined a met-
ric that computes the ratio between the number
of time steps the agent survived in the simula-
tion and the total number of time steps available

3

https://github.com/ThatBerra/thesis_AI4realnet_distributed
https://github.com/ThatBerra/thesis_AI4realnet_distributed


Executive summary Davide Beretta

Figure 2: Comparison between different param-
eter choices.

(8064). In the case of training the value is com-
puted for each iteration as an average over the
number of chronics.

PPO parameters exploration. We ex-
plored different combination of buffer size,
namely the number of interactions the agent col-
lects before an update, and batch size, that is
the number of samples considered in each up-
date iteration. We observed that for low values
of buffer size it happens that the training perfor-
mance reaches a plateau in the early iterations
and it does not improve with further update of
the models. This does not happen for higher
buffer size values, but the training is much slower
and the performance does not improve much.

Comparison with centralized approach
We selected the pair of buffer and batch size that
achieved the highest performance in the train-
ing, i.e. buffer_size = 16 and with those we
trained a centralized model, in which a single
agent can observe and act on the entire grid,
and a complete observation model, in which the
Low-Level Agents observe the complete grid but
can act only on the substation in their cluster.
We observed that both models suffer the same
plateau problem, that presents itself earlier in
the very first iterations. Moreover, they seem
to stabilize on a much lower performance than
the one of our model with independent observa-
tions. This shows that the algorithm is able to
learn how to operate the grid and with this par-
ticular choice of parameters it even seems to top

the performance of an algorithm able to observe
the whole state of the environment.

Figure 3: Comparison between centralized and
ditributed approaches.

To address the problem of the plateau we mod-
ified the learning rate of PPO, reducing it from
3 × 10−4 to 3 × 10−5. We trained a central-
ized and a distributed model with this setup and
we compared the performances. Neither of the
two reached a plateau, the centralized achieved
a much higher best performance than the one
obtained with the previous learning rate, even
if it drops at a certain point during training.
However, the performance of the distributed ap-
proach is lower than the previous one.

Figure 4: Comparison between centralized and
ditributed approaches with a reduced learning
rate.

Validation At last, we evaluated our best
models on the validation chronics. We selected
the centralized model with learning rate 3×10−5

4



Executive summary Davide Beretta

Figure 5: Model evaluation. Chronics 80-100.

at its 13th training iteration, in which it achieved
the highest performance of 0.59, and the dis-
tributed model with learning rate 3×10−4, after
it reached the plateau, which has a performance
on the training dataset of 0.37. We computed
the metric for each one of the chronics in the val-
idation dataset and we plotted them in a barplot
which has three bars for each chronic. On the
left there is the value achieved by the central-
ized, on the right the one obtained by the dis-
tributed and in the middle the one achieved by
an agent that does nothing at every time step.
The results of the evaluation reflect the ones of
the training, namely most of the time the cen-
tralized survives more time steps than the dis-
tributed.

5. Conclusions
In our work, we propose a distributed Reinforce-
ment Learning paradigm to handle power grid
operation problems. A group of agents acts inde-
pendently on a decomposed version of the orig-
inal problem. The decomposition is found by
applying a domain-agnostic algorithm that clus-
ters state and action variables of the correspond-
ing Markov Decision Process using the estimated
values of Mutual Information between variables.
Once the decomposition is found, an agent that
makes use of PPO as base learner is defined
for each sub-problem. Different choices of pa-
rameters are explored and the models are then
compared with centralized approaches, showing
promising results and demonstrating potential
applicability in power grid operation problems,
which in turn is definitely better than the agent
doing nothing.

References
[1] B. Donnot. Grid2op- A testbed plat-

form to model sequential decision making
in power systems. . https://GitHub.com/
rte-france/grid2op, 2020.

[2] Weihao Gao, Sreeram Kannan, Sewoong Oh,
and Pramod Viswanath. Estimating mu-
tual information for discrete-continuous mix-
tures, 2018.

[3] Antoine Marot, Sami Tazi, Benjamin Don-
not, and Patrick Panciatici. Guided ma-
chine learning for power grid segmenta-
tion. In 2018 IEEE PES Innovative
Smart Grid Technologies Conference Europe
(ISGT-Europe), pages 1–6. IEEE, 2018.

[4] Erica van der Sar, Alessandro Zocca, and
Sandjai Bhulai. Multi-agent reinforcement
learning for power grid topology optimiza-
tion. arXiv preprint arXiv:2310.02605, 2023.

5

https://GitHub.com/rte-france/grid2op
https://GitHub.com/rte-france/grid2op

	Introduction
	Problem Formulation
	MDP definition
	Problem decomposition

	Algorithm Proposal
	Decomposition
	Clustering
	Distributed RL

	Experiments
	MDP Decomposition
	Distributed RL applied to power grid operations

	Conclusions

