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Abstract: Real-time, efficient management of network-based systems is a crit-
ical challenge in many domains. Approaches based on optimization have shown
promising results, as they are able to provide optimal solutions by planning ahead,
but this comes at the cost of recomputing the optimal solution every time an im-
predictable event disrupts the planned schedule, which becomes unpractical when
there are real-time constraints and the system has to scale to very large networks.
In this work, we show how to build a formulation of a Markov Decision Process
which is tightly related to the natural graph-based structure of problems of this
class, with a special focus on the Train Dispatching Problem, but we will also
briefly mention other domains where the same approach could be applied. Then
we propose a distributed Multi-Agent Reinforcement Learning algorithm based on
Q-Learning where agents are deployed to the nodes of the graph and, in a simulated
environment of a railway network, we show how they are able to learn empirically
optimal policies by acting independently and exchanging minimal information with
their neighbors, even when unpredictable events such as train malfunctions occur.
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1. Introduction

Research in the field of Reinforcement Learning (RL) has seen a growing interest in the last years, both in
academia and industry, due to the promising results that have been achieved in a wide variety of domains, such
as robotics, games, finance, and many others. The natural ability of RL algorithms to learn from experience
and adapt to changes makes them particularly suitable for control problems in stochastic environments, where
planning ahead is difficult and the environment is affected by unpredictable events. In very large environments,
where global solution methods fail due to computational complexity, distributed RL algorithms can fill the gap
by allowing a group of independent agents to learn optimal control policies by acting locally and observing the
effects of their actions on the environment.
In the last years, the demand for efficient management of large scale networks has increased significantly, making
their optimal control a critical challenge in many domains. According to the Railway Statistics 2015 Report by
the International Union of Railways (UIC) [2], European Union railways carry 416 billion passenger-kilometers
(pkm) and 261 billion tonne-kilometers (tkm) of goods per year on a railway network of a total length of 350, 000
km, which make their management a complex task, of paramount importance for the economy of the continent.
According to ENTSO-E, the European Network of Transmission System Operators, in 2022, 532 million cus-
tomers were served by the European power grid, with a total of 312, 693 km of transmission lines, 3174.2 TWh
of energy transmitted, and a total of 1, 023, 721 MW of net generation capacity [1].
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The operation of such large networks is a complex task where often decisions are still made by human experts,
who have to take into account a large amount of information and make decisions in real time to avoid disruptions
in the service. We are confident that, in the future, the use of AI techniques, and in particular Reinforcement
Learning, will be able to provide assistance to human operators in the management of these networks, rendering
their operation more efficient and reliable.
In this work, we use the expressions network-based problems, or graph-based problems, as umbrella terms to refer
to a wide class of problems where the environment can be modelled as a directed graph. In particular we are
interested in problems where the nodes of the graph can be seen as decision points, connected to other decision
points by directed edges, along which the consequences of the decisions propagate. A wide variety of problems
can be modelled in this way, such as the Train Dispatching Problem, a special case of the more general Vehicle
Rescheduling Problem [11], which is the main focus of this work. But we will also mention, without diving
into the details, other important problems on networks that are naturally modelled as graph-based problems,
such as the problem of real-time management of power grids, or the problem of managing traffic flow in a city.
Usually this class of problems presents a high degree of stochasticity, meaning that the environment is affected
by random events that are not easily predictable, making planning ahead difficult. To face this challenge,
solutions are required to adapt to rapid changes in the environment in real time, while also being able to scale
to very large networks.
Classical optimization techniques have been successful, since they are able to provide optimal solutions by
planning ahead, but they also present some limitations. In particular, to successfully build the optimization
problem one needs to have a full model of the environment which is not always available, especially when
dealing with very complex systems with high stochasticity. Moreover, the optimal solution is usually computed
before the system starts to operate, and any unpredictable event that disrupts the planned schedule will require
a complete replanning, which can quickly become unpractical to do real-time when dealing with very large
instances of the problem.
On the other hand, Reinforcement Learning (RL) techniques, and in particular Multi-Agent Reinforcement
Learning (MARL), are specifically designed to deal with real-time decision-making in stochastic environments,
which makes them promising candidates in this scenario. Although less mature than classical optimization
approaches, and being notoriously difficult to train, RL agents are able to observe changes or departure from
the expected environment behavior, and they can learn to act optimally even in unforseen circumstances. Most
RL techniques are model-free, meaning that they do not require a model of the environment to work properly,
and they can adapt to changes in real time without needing to be retrained from scratch.

2. Related Work

Much work has been done in the field of optimization applied to graph-based problems. In the field of train
dispatching, Lamorgese et al. [10] propose a decomposition of the problem which is solved by a master-slave
approach, where a nearly optimal solution is found by iteratively solving the problem, adding new constraints
at each iteration. Fischer et al. [8] propose a re-optimization approach where the solution of the problem is
optimized again and again as disturbances occur in the system. Schälicke et al. [14] propose a formulation that
can be solved in real-time by a MIP solver, and show that the method achieves acceptable computation times
with good solution quality on a dispatching area in Germany.
In the field of power grid management, Jiang et al. [9] propose a risk based control strategy for power grid
operation and solve the linearized problem with optimization techniques. Feng et al. [7] propose a MILP
formulation of the power grid operation problem in order to achieve optimal allocation of electric power resources,
adjusting power supply and demand.
Reinforcement Learning approaches applied to the train dispatching and scheduling problems include the one
of Agasucci et al. [3], which propose both a centralized approach based on graph neural networks, and a
decentralized approach under the assumption of full observability of the network. Yue et al. [19] propose a
method to learn online dispatching policies which achieves online scheduling using idle time to solve future
tasks.

3. Background

3.1. Reinforcement Learning

Reinforcement Learning (RL) is a machine learning paradigm which is applied to problems where an agent
interacts with an environment over a sequence of time steps and has the objective of learning a policy that
maximizes a certain scalar function, usually the cumulative discounted reward (return). In model-free RL
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agents learn how to act optimally without needing a complete model of the environment, which is usually
unavailable in real scenarios.

3.2. Markov Decision Processes

Markov Decision Processes (MDPs) [13] are a mathematical framework used to model decision-making problems
where an agent interacts with an environment over a sequence of time steps. Formally, an MDP is defined by
a tuple ⟨S,A, P,R, γ, µ⟩ where:
• S = {s1, s2, . . . , s|S|} is a finite set of states.
• A = {a1, a2, . . . , a|A|} is a finite set of actions.
• P is the transition probability function:

P : S ×A× S → [0, 1]

(s, a, s′) 7→ P (st+1 = s′|st = s, at = a)

P is the probability distribution of the next state of the environment s′ given the current state s and
the action a taken by the agent. In the case of MDPs, the Markov property holds, meaning that the
transition probability of the next state depends only on the current state and action, and not on the past
history of states and actions, more formally:

P (st+1 = s′|st = s, at = a, st−1, at−1, . . . , s0, a0) = P (st+1 = s′|st = s, at = a)

• R is the reward function:

R : S ×A× S → R
(s, a, s′) 7→ E[rt|st = s, at = a, st+1 = s′]

• γ ∈ [0, 1] is the discount factor. The discount factor determines the importance of future rewards in
the agent’s decision-making process. A discount factor close to 0 makes the agent focus on immediate
rewards, while a discount factor close to 1 makes the agent focus on long-term rewards.

• µ ∈ [0, 1]S is the initial state distribution: µj = P(s0 = sj)

3.3. Return

The return at time t, Gt is the cumulative discounted reward an agent receives after time step t. Formally:

Gt =

∞∑
k=0

γkrt+k+1

where rt+k+1 is the reward received by the agent at time step t+ k+1. In most RL problems, the return is the
function that the agent aims to maximize.

3.4. Policy and Value Functions

Agents interacting with the environment use a policy to make their decisions. A policy π is a distribution over
actions conditioned on the current state. Formally, a policy π is defined as:

π : S ×A→ [0, 1]

(s, a) 7→ π(a|s)

such that
∑

a∈A π(a|s) = 1 ∀s ∈ S.
An MDP is considered solved when the optimal policy π∗ is found. The optimal policy of an MDP is the policy
that maximizes the expected return. Formally:

π∗ = argmax
π

Es∼µ [Gt|st = s, π]

The value function of an MDP is defined as the expected return an agent receives when starting in a state s
and then following policy π. Formally:

vπ(s) = E [Gt|st = s, π]

The state-action value function of an MDP is defined as the expected return an agent receives when starting in
a state s, taking an action a, and then following policy π. Formally:

qπ(s, a) = E [rt + γGt+1 | st = s, at = a, π]

3



Given a state-action value function q, we can define the ϵ-greedy policy with respect to q as follows:

πϵ−greedy(a|s) =

{
1− ϵ if a = argmaxa′ q(s, a′)

ϵ otherwise

with ϵ ∈ [0, 1].

3.5. Multi-Agent Reinforcement Learning

Multi-Agent Reinforcement Learning (MARL) [4] is an extension of the standard RL paradigm to environments
where multiple agents interact simultaneously. Each agent seeks to maximize its own reward function in a
setting where agents must cooperate or compete with each other. In such environments, the actions of one
agent can affect the rewards and state transitions of others, creating a need for agents to consider the strategies
of their counterparts.
MARL introduces distinct challenges beyond those found in single-agent settings. In MARL, multiple agents
interact within a shared environment, each aiming to optimize its own rewards. Key challenges include non-
stationarity, partial observability, coordination and credit assignment.
A primary issue in MARL is non-stationarity. Since each agent learns and updates its policy over time, the
environment becomes non-stationary from the perspective of any single agent. This makes it difficult for agents
to learn stable policies, as the dynamics of the environment shift with the changing strategies of others.
Another significant challenge is partial observability, where agents have limited knowledge of the global state
due to restricted observations. This can make it difficult for agents to make fully informed decisions, potentially
leading to suboptimal actions. Additionally, communication protocols can be incorporated, allowing agents to
share information and coordinate more effectively.
Another challenge is the credit assignment problem. In collaborative tasks where agents receive a global reward,
it can be challenging to attribute success or failure to individual actions. This issue complicates each agent’s
ability to learn effectively from experience.
Managing the exploration-exploitation trade-off [6] is also more complex in MARL. Exploration by one agent
may disrupt the learning of others, while excessive exploration across agents can destabilize the entire system.
The development of robust MARL systems requires addressing these challenges through methods that stabilize
learning, support partial observability, scale efficiently, and foster effective cooperation among agents.

3.6. Temporal Difference Learning

Temporal Difference (TD) Learning [15] is an essential method in Reinforcement Learning (RL) for estimating
value functions. TD learning updates value estimates incrementally at each time step. This incremental update
allows TD learning to be applied in environments with long or continuous episodes, where waiting for an episode
to complete is impractical.
In TD learning, value estimates are updated by bootstrapping, meaning that current estimates are refined using
other, possibly incomplete, estimates rather than waiting for a final outcome. This approach enables agents to
learn from incomplete sequences of experience and adjust value estimates in real time. The simplest form of
TD learning, known as TD(0), updates the value of the current state v(s) according to the rule:

v(st)← v(st) + α (rt+1 + γv(st+1)− v(st)) (1)

where:
• st is the current state,
• rt+1 is the reward received after transitioning from st to st+1,
• α ∈ (0, 1] is the learning rate, controlling the step size for updates,
• γ ∈ [0, 1] is the discount factor, determining the weight of future rewards.

The term rt+1 + γv(st+1) − v(st) is called the TD error, representing the difference between the expected
and observed value estimates. By minimizing this TD error, the agent iteratively improves its value function
estimates based on experience.
TD learning is particularly useful in situations where the agent operates in dynamic environments, as it allows
for faster and more responsive updates than waiting until the end of an episode. TD learning is a foundational
technique in RL, forming the basis for more sofisticated algorithms such as Q-Learning, SARSA, DQN, and
others.
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3.7. Q-Learning

The Q-Learning algorithm [18] is one of the simplest and most popular reinforcement learning algorithms. Q-
Learning is used to learn the optimal state-action value function q∗(s, a) of an MDP. Then, from the optimal
state-action value function q∗, the optimal policy π∗ can be derived as follows:

π∗(s, a) =

{
1 if a = argmaxa′ q∗(s, a′)

0 otherwise

The Q-Learning algorithm is illustrated here:

Algorithm 1 Q-Learning
Input: MDP ⟨S,A, P,R, γ⟩, learning rate α ∈ (0, 1), exploration ϵ ∈ [0, 1], number of episodes N
Preconditions: S finite, A finite
Initialize q(s, a) ∀s ∈ S, a ∈ A arbitrarily
for each episode do

Observe state s, choose action a using ϵ-greedy policy induced by q, observe next state s′ and
reward r
Update q:

q(s, a)← (1− α)q(s, a) + α

[
r + γmax

a′
q(s′, a′)

]
end for
return q

Q-Learning is guaranteed to converge to the optimal state-action value function q∗ under certain conditions
[17]. We will use this algorithm as the basis for our tractation, and we will adapt it to become distributed
across multiple agents.

3.8. Directed Graphs

A directed graph (or digraph) [16] is a mathematical structure used to model pairwise relationships between
objects, where these relationships have a specific direction. Formally, a directed graph G is defined as an ordered
pair G = (V,E), where:
• V is a set of nodes, representing the entities in the graph.
• E ⊆ V × V is a set of directed edges, where each edge is an ordered pair (u, v) indicating a connection

from node u to node v.
Unlike undirected graphs, the edges in a directed graph imply a one-way relationship. If (u, v) ∈ E, then there
is a directed edge from u to v, but this does not necessarily imply an edge from v to u.
Some fundamental properties and concepts associated with directed graphs include:
• Degree of a Node: In directed graphs, each node has two associated degrees:

◦ In-degree of a node v, denoted deg−(v), is the number of edges directed into v.
◦ Out-degree of a node v, denoted deg+(v), is the number of edges directed out of v.

• Paths and Cycles: A directed path in G is a sequence of nodes v1, v2, . . . , vk such that (vi, vi+1) ∈ E for
1 ≤ i < k. A cycle is a directed path that starts and ends at the same node, with all other nodes in the
path being distinct.

• Strongly Connected Graphs: A directed graph is strongly connected if there exists a directed path between
every pair of nodes. For any two nodes u, v ∈ V , there is both a path from u to v and a path from v to u.

• Acyclic Graphs: A directed graph is acyclic if it contains no cycles. Such a graph is often referred to as
a Directed Acyclic Graph (DAG).

• Planar Graphs: A graph is called planar if it can be drawn on a two-dimensional plane without any of
its edges crossing, except at their endpoints (i.e., nodes). Formally, a graph G = (V,E) is planar if there
exists an embedding of G in the plane such that no two edges intersect except at their nodes.

3.9. Directed Multigraphs

A directed multigraph [5] is a generalization of a directed graph in which multiple directed edges between the
same pair of nodes are allowed. In other words, a directed multigraph can have more than one directed edge
from node u to node v, and these edges can be distinguished by labels.
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Formally, a directed multigraph is defined as a pair G = (V,E), where:
• V is the set of nodes, representing the entities in the graph.
• E ⊆ V × V × L is the set of directed edges, where L is the set of edge labels. Each edge is an ordered

triple (u, v, l), where u, v ∈ V represent the tail and head nodes of the edge, and l ∈ L is the label of the
edge, used to distinguish different edges between the same pair of nodes.

In contrast to simple directed graphs, where an edge between any two nodes is either present or absent, a
directed multigraph allows multiple edges with potentially different labels between pairs of nodes.

4. Problem Formulation

It is often very natural to formulate a transportation, communication or logistics problem as a problem of
decision making in a graph. For instance, if we were to solve the problem of managing a railway network,
we would consider the switches of the network as decision points, and therefore deploy agents to the railway
switches to make decisions about train routing, with the goal of minimizing the total delay of the network.
On the other hand if we were to solve the problem of managing a power grid, we may consider power plants as
decision points, and deploy agents to the power plants to make decisions about power generation, with the goal
of minimizing the total cost of power generation, the total emissions, or the total power loss in the grid.
What all these problems have in common is that the network can be modelled as a graph where the nodes are
decision points, and the edges are the connections between the decision points along which the effects of the
decisions propagate.
If we were to model the problem of delivering packages in a city, we could consider the intersections of the city
as decision points, and deploy agents to the intersections to make decisions about package routing, with the
goal of maximizing the number of packages delivered in a given time frame. By observing what is happening
in the neighborhood of the decision point (in the outgoing edges), nodes can make informed decisions about
the best action to take. In the case of package delivery, an agent could choose to send a package to a neighbor
node that is closer to the destination, or that has less traffic, or that has a higher probability of delivering the
package on time.

4.1. The Markov Decision Process of a network

Let’s represent our network as a directed graph G = (N,E), where N is the set of decision points (nodes) of
the network, and E is the set of connections between the decision points (edges). The choice of formulating
the network as a directed graph derives from the fact that usually decisions "have a direction" (sending a
package from a certain node to another, or routing a train from a certain switch to another). Anyway, note
that this formulation does not cause any loss of generality: if we were to model a network where decisions are
bidirectional, it would be sufficient to associate two edges to the same pair of nodes, one in each direction.

4.1.1 Local node observations

Each node n ∈ N in the network has visibility of the state of the environment up to a certain depth d in the
graph, which we will call the observation depth. Observation depth d poses a limit on the information that
a node can obtain from the environment, and it is a parameter that has to be carefully tuned as it creates a
trade-off between the amount of available information and the complexity of the learning process. As we will
see later, it is important that nodes are able to observe the state of their successors in the graph (d ≥ 1), since
they will be affected by the immediate consequences of the decision taken by the node. For instance, if a node
is controlling a switch in a railway network, it is important that it is able to observe the state of the tracks that
are connected to the switch, in order to avoid collisions between trains, or to avoid sending a train to a track
that is already crowded. A bad decision taken from the current node would increase the delay of the train,
affecting the performance of the next nodes that will be responsible of routing that train in the future. An
example of a local observation of depth d = 1 is shown in Figure 1.
We will call the set of all the local observations of depth d that a node n can make the local state space of the
node, and we will denote it as Sn,d.

4.1.2 State space

The resulting state space of the global MDP representing the whole network is the combination of all possible
local states of the environment observed by the nodes in the network. Given observation depth d, the generic
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Figure 1: Edges and nodes included in observation of depth 1 from the point of view of node a,
highlighted in red.

state s of the network can be represented by the following matrix:

s =


sd,1
sd,2

...
sd,|N |

 (2)

where each row sd,j is the local observation of depth d made from node j. Formally, the state space S of the
MDP representing the network is the Cartesian product of the local state spaces of all the nodes in the network,
such that:

S = S1,d × S2,d × · · · × S|N |,d (3)

Note that if we formulate the MDP like this the state space becomes redundant, since the same information
may be present multiple times basing on how deep the local observations are. As the observation depth d grows,
nodes able to observe a larger portion of the network, increasing the overlapping between different local node
observations. In the next sections we will show how redundancy does not cause any problem as we will depart
from this formulation to generate a set of reduced MDPs, one for each agent in the network, that only contain
a subset of the information present in the global MDP, with only the most relevant information needed for the
agent to take a local decision.

4.1.3 Local actions and action space

As we mentioned before, each node n ∈ N in the network is a decision point, that is, the node is required to
make a local decision at each time step. Basing on the specific problem we are trying to solve, the set of actions
that are available at each decision point may vary.
To maintain a general formulation, we will consider that each node n ∈ N has a set of actions An available at
each time step.
The action space A of the MDP representing the network is once again the combination of the action spaces of
all the nodes in the network, such that:

a =


a1

a2

...
a|N |

 (4)

with each row aj ∈ Aj being the action taken by node j, more formally:

A = A1 ×A2 × · · · ×A|N | (5)

4.1.4 Reward functions

The reward function R of such an MDP can be defined in many ways, and it ultimately depends on the specific
problem we are trying to solve. It should be designed with the global objective of the network in mind, and it
should be able to guide the agent towards the optimal solution.
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Figure 2: Partitioning of a network with 6 nodes into k = 6 partitions (each partition with its outgoing
edges, shown in different colors).

In the case of the railway management problem, a possible reward function could be inversely proportional to
increments in the total delay of the network, or it could be proportional to the number of trains that reach
their destination on time. In the case of the package delivery problem, it could be proportional to the number
of packages delivered at each time step.

4.2. Towards a multi-agent approach

One significant limitation of the global MDP we have just defined is that it is not scalable to large networks,
since the state and action spaces grow exponentially with the number of decision points (nodes) in the network.
Let’s now show how we can decompose the global MDP into a set of reduced instances of that MDP, one for
each agent in the network.

4.2.1 Partitioning the network

A partition of a set is a grouping of its elements into non-empty subsets, such that every element is included in
exactly one subset.
We will partition the set of nodes N into k sets N1, N2, . . . , Nk such that:

N = N1 ∪N2 ∪ · · · ∪Nk

Ni ∩Nj = ∅ ∀i ̸= j

Ni ̸= ∅ ∀i

(6)
(7)
(8)

For our tractation, we will focus on the specific case of partitioning the network into k = |N | partitions, where
each partition consists of a single node.
In Figure 2 we show an example of partitioning of a network with 6 nodes.

4.2.2 The reduced MDP

After partitioning the network into |N | partitions, one for each node, we can define a notion of reduced MDP
with respect to each partition.
For a generic node nj ∈ N , we define a new MDP with a smaller state space, which is equal to the space of local
node observations of depth d, Sj,d, and a smaller action space, which is equal to the space of local actions, Aj .
Sj,d is derived from the global state space S by selecting only the information that is relevant to the specific
node as follows:

{nj} →


sd,1
sd,2

...
sd,|N |


︸ ︷︷ ︸

Global observation

→ sd,j︸︷︷︸
Local observation
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Similarly, for the local action space Aj :

{nj} →


a1

a2

...
a|N |


︸ ︷︷ ︸

Global action

→ aj︸︷︷︸
Local action

It is worth now to spend a few more words on the reward function of the reduced MDP. In the case of the global
MDP it is often very easy and natural to formulate a reward function in terms of the global objective we are
trying to optimize. Furthermore, as all the information of the environment is available at each time step, it is
also easy to guide an agent towards the optimal solution.
In the case of a reduced MDP, the situation is more subtle. An agent operating in the reduced MDP has only
a partial view of the environment, as it is not able to observe what is happening in the entire network, but
only up to a certain depth away from the node making the observation; we can say that the environment is
partially observable from the point of view of each agent. This means that each agent will never see the effects
of its actions on the portion of the network that it cannot observe directly. This makes the formulation of the
reward function crucial in guiding the agents towards the optimal solution, as it is the only source of information
that potentially gives them a hint about the global effects of their actions. To make an example, if we were
to solve the railway management problem, a possible reward function for the reduced MDP could be inversely
proportional to the total delay of the trains that have been recently routed from the switch that corresponds
to the node the agent is controlling. This way, even if the agent is not able to observe directly the state of the
entire network, it is still able to understand the positive or negative effects of its actions on the global objective.
After partitioning the network and defining the reduced MDPs, we now have a set of |N | reduced MDPs, one
for each node, that can be solved independently by assigning an agent to each node. The agents will operate
simultaneously and independently in their respective MDPs, and their actions will affect the global state of the
network.
Since agents act in parallel, the complexity of the approach is not affected by the size of the network, since if
we were to increase the number of nodes in the network, it would be sufficient to increase the number of agents
accordingly, and the complexity of each reduced MDP would not change.

5. Learning on Graphs

Before describing the approach we propose to solve the MDP, we need to make some assumptions on how
decisions taken on a specific node of the network affect other nodes, and how the effects of those decisions
eventually propagate through the rest of the network.
It is safe to assume that in the class of problems we are considering, the effects of decisions taken on a node
of the network will immediately affect the nodes that are directly connected to it, and eventually such effects
will propagate through the network affecting the state of the nodes that are further away from the node that
took the decision. Take for example the case of railway management, where a train is routed from a switch to
one of the next switches. The decision taken by the agent which controls the first node will affect the future
observation of the agent that controls the next node (the one receiving the routed train). The agent that controls
the node that receives the train is not directly responsible for the decisions taken in the past, and should not
receive any reward or penalty basing on the previous decisions of agents that control other nodes. On the other
hand, the agent that took the decision to route the train should be held accountable for the consequences of its
decision, and should receive a reward or penalty basing on the effects of its decision on the rest of the network,
starting from the node that first receives the train. By doing so, agents are encouraged to take decisions that
are beneficial for their neighbors, fostering cooperation among them.
In RL, the estimate of how good it is to be in a certain state is given by the value function v(s), which is the
expected return starting from state s, and the value function v(s) can be estimated by the action-value function
q(s, a) by the following relationship:

v(s) = max
a

q(s, a) (9)

If we had a way to estimate the action-value function q, we would therefore also have an estimate of the value
function v, and we would also be able to calculate an ϵ-greedy policy π associated to q. For this reason in this
work we focus on Q-Learning, a model-free RL algorithm that estimates the action-value function q(s, a), and
we try to adapt it to the specific needs that arise from our graph formulation.
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5.1. Q-Learning on Graphs

Let us now consider a generic partition j, and denote with nj the node associated to that partition. Agent j
will be responsible for making decisions in the reduced MDP associated to partition j, given by the state space
Sj,d and the action space Aj .
At each time step t, agent j will observe the state st ∈ Sj,d of the environment, take action at ∈ Aj , and observe
the reward rt. From our previous assumptions, the effect of action at will be immediately observed by the nodes
that are directly connected to node nj through its outgoing edges. We will denote with Fj = {n1, n2, . . . , n|Fj |}
the set of nodes that are directly connected to node nj through its outgoing edges. The effect of action at
will be observed by the nodes in Fj , and they will communicate an estimate of their value function to agent j
calculated from their q-table:

v̂i(st+1) := max
a′

qi(st+1, a
′) i = 1, 2, . . . , |Fj | (10)

Agent j receives the estimates of the value functions of the nodes in Fj , and uses them to update its own q-table:

qj(st, at)← (1− α)qj(st, at) + α

rt + γ

|Fj |∑
i=1

wi(at) · v̂i(st+1)


= (1− α)qj(st, at) + α

rt + γ

|Fj |∑
i=1

wi(at) ·max
a′

qi(st+1, a
′)


(11)

(12)

The weights wi are normalized and action-dependent, as they are used to give more or less importance to
different value function estimates, depending on how much action at has affected each node in Fj . The values of
the weights wi are determined by the specific problem we are trying to solve, and they are not hyperparameters
of the algorithm.
For instance, if we were to solve the train dispatching problem, we would associate each node to a switch in the
railway network, and each edge as a track in the railway connecting two consecutive switches. In this specific
case, when a node decides to send a train into a certain track, the effect of that decision will only affect the
node that is directly connected to the specific edge associated to that track, therefore, the weight wi associated
to the value function estimate of the node receiving the train will be 1, and all the other weights will be 0,
since the decision taken will not affect the other nodes connected to the switch. If we were to operate a power
grid, we could associate each node to an active element of the grid, such as a power plant, and each edge as a
power line. Let us assume that the only two available actions in this case are to increase or decrease the power
generation of the power plant. If a node decides to increase its power generation, the effect of that decision
will likely equally affect all the nodes that are directly connected to the power plant through the power lines,
therefore the weights will be equal to 1/|Fj | for all the nodes in Fj .

5.1.1 Communication between agents

To implement this algorithm, nodes need to be able to communicate with their successors in the network, in
order to exchange the value function estimates. The number of communication channels needed by each node to
correctly update its q-table is O(h) where h is the maximum out-degree of the graph representing the network.
The total communication overhead of the network is equal, in the worst case, to the total number of edges in
the network, which is O(|E|).
Note that in the case of problems similar to train dispatching, as we mentioned before, the number of communi-
cation channels active at each time step is O(|N |), since every node just needs to communicate with one other
node, the only one that is directly affected by its decision.

6. A case study: railway networks and the Train Dispatching Problem

There are mainly two stakeholders involved in the operation of a railway network: the Infrastructure Manager
(IM) and the Train Operating Company(s) (TOC). The IM is responsible for the maintenance and management
of the infrastructure. It must schedule maintenance activities without significantly impacting the train services,
which becomes increasingly challenging as the traffic on the network grows, since maintenance tasks will often
conflict with train schedules. IMs have also the responsibility of deciding where to deploy the necessary resources
(such as maintenance teams and equipment, vehicles, etc.) across a large network. To efficiently do this, they
need to predict the future demand of the network to a certain extent.
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On the other hand, TOCs are responsible for the operation of the trains. They rely on track availability to run
their services, and plan their schedules according to the availability of the infrastructure provided by the IM.
They are directly responsible for the passengers’ experience and must ensure that trains run on time and that
passengers are informed in case of delays or cancellations. TOCs need visibility on the network maintenance
schedule to plan their services accordingly. When unexpected events occur, such as train malfunctions or delays,
TOCs must be able to make real-time decisions on how to reschedule the trains (train dispatching) in order to
minimize the effect of those events on the network.
We will now show how to apply our distributed MARL approach to the latter problem, that is the problem of
real-time train dispatching in a railway network.

6.1. The Flatland Simulator

To test our approach, we are going to use the Flatland simulator (https://flatland.aicrowd.com/intro.
html) which is a simple, yet powerful railway simulator designed to test reinforcement learning algorithms on
the problem of real-time train dispatching on a grid-like environment.

Figure 3: Flatland environment example

Figure 4: Flatland environment railway cell types

The core environment in Flatland is represented as a two-dimensional grid, such as the one in Figure 3, where
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each cell can be one of the eight different types of cells shown in Figure 4, taking into account all the possible
rotations and reflections of each cell type. Trains can move inside the grid only along the rails and they can
make only the transitions allowed by the type of cell they are currently in. Take for example the cell type 2
of Figure 4, with the same orientation as shown in Figure 4, which allows trains oriented towards North to go
North or West, trains oriented towards East to go South, and trains oriented towards South to go South. The
transition set of that cell is therefore: {(N,N), (N,W ), (E,S), (S, S)}. Transition sets will be later used to
define the multigraph representation of the Flatland environment.
The grid of the Flatland environment can be randomly generated from a seed, and it can be configured with
different parameters, such as the size of the grid, the number of trains, the number of cities in the map, the
maximum number of parallel tracks inside cities, the maximum number of parallel tracks outside cities, and
the random seed. Moreover, the environment can be configured to include stochastic events, such as train
malfunctions, implemented as a probability of a train to break down at each time step. When a train breaks
down, it stops moving for a random number of steps, and it is then repaired and resumes its journey. While a
train is broken down, it blocks the track it is currently on, and other trains cannot pass through it. Any train is
assigned a schedule when the environment is generated, which includes all the necessary information about the
expected departure and arrival times of the train, the starting position and the target station. Trains cannot
leave the starting position until their earliest departure time, and they should reach their target station before
their latest arrival time, otherwise they will be considered late.
The goal of each train is to get to its target station on time, while avoiding collisions with other trains. The
environment is considered solved when all trains reach their target stations on time.

6.2. Malfunctions

Although malfunctions are the only type of stochastic event admitted in the Flatland environment, they are
useful to model a wide range of possible events that can occur in a real railway network, such as train breakdowns,
signal failures, and track obstructions. The parameters that regulate the occurrence of malfunctions are fixed
at environment generation time.
At each step every train has a probability of malfunctioning, such that the number of malfunctions of a certain
train at each time step follows a Poisson distribution with parameter λ equal to the malfunction rate of the
train. When a train malfunctions, it stops moving for a random number of steps given by a uniform distribution
with minimum duration dmin and maximum duration dmax fixed at environment generation time. Formally, the
number of malfunctions of a train at each time step, Nmalf can be expressed as:

Nmalf ∼ Poisson(λ)

and the duration of each malfunction d is also a random variable expressed as:

d ∼ Uniform(dmin, dmax)

Under the reasonable assumption of independence between the malfunctions of different trains, we can model
the total number of malfunctions Nmalf, tot at each time step in a network with n trains as:

Nmalf, tot ∼ Poisson(nλ)

6.3. Transition Maps

As already mentioned in Section 6.1, each cell in the Flatland environment allows a restricted set of transitions
based on the orientation of the train with respect to the cell. Trains, at each time step, can be oriented towards
one of the four cardinal directions: North, East, South, and West. Let’s define an encoding for the cardinal
directions:

North → 0
East → 1
South → 2
West → 3

Given a cell of the environment with position (i, j), we call the transition set Tij of that cell the set of all
possible transitions allowed in that cell, such that:

Tij ⊆ {0, 1, 2, 3} × {0, 1, 2, 3}

An alternative representation for transition sets is the transition matrix Tij , which is a 4×4 matrix where each
row corresponds to the orientation of the train, and each column corresponds to the possible transitions from
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that orientation. The matrix entries are always 0 or 1, basing on the existence of the corresponding transition.
Formally:

Tij
kl =

{
1 if (k, l) ∈ Tij
0 otherwise

For example, a cell of type 2 in the Flatland environment (Figure 4), with the orientation shown in the figure,
and position (i, j)=(7, 5) has the following transition set:

T7,5 = {(0, 0), (0, 3), (1, 2), (2, 2)}

and the corresponding transition matrix will be:

T7,5 =


1 0 0 1
0 0 1 0
0 0 1 0
0 0 0 0


6.4. A train-centered model: the Flatland MDP

We call the way the standard Flatland MDP is formulated train-centered because agents are associated with
trains, and observations and actions are defined with respect to each train. At each step, every train has 5
actions available, and the action space for each agent is:

A = {MOVE FORWARD, MOVE LEFT, MOVE RIGHT, STOP MOVING, DO NOTHING}

A single agent formulation of the Flatland MDP would use as a state the entire grid (although Flatland does
not impose any type of observation a priori, indeed it leaves the choice on how to build the observation up
to the user), that is a global view of the enviroment, with all the information about the current positions of
the trains, their directions, their earliest departure and latest arrival times, their current state, their speed and
target stations. All this information can be concatenated to form a global observation vector, which will be the
state of the environment.
The action space of the single-agent MDP would be the union of the action spaces of all the agents, therefore:

Asingle agent = Anumber of trains

At each time step, the agent observes the global state of the environment, generates the action vector, which is
then converted to a dictionary of actions, one for each train, which get executed by the environment.
Flatland uses a sparse reward function, which means every train receives a reward different from zero only when
it reaches its target station or at the end of the episode, when the time expires. If the train arrives at its target,
the reward is min(0, latest arrival− actual arrival). If the train does not reach its target, the reward is equal to
the negative shortest path distance from the train position to its target station.
In the single agent case, after the step is executed in the environment, a reward for each train is emitted, and
the sum of all the rewards is returned to the agent.
In this setting, it is easy to build the corresponding multi-agent MDP, since the only change that’s needed is
to make sure every agent controls a single train. Every agent now receives only the reward of the train it is
controlling, and it seeks to maximize the discounted cumulative reward of that train.
The main difference between the two approaches is that in the single agent case the solution of the MDP is a
single policy that controls all the trains, while in the multi-agent case the solution is a set of policies, one for
each agent, that together control all the trains.
In the next sections we will see how to depart from the Flatland formulation of the MDP, and how to model
this environment according to the MDP formulation we proposed in Section 4.

6.5. Departing from the Flatland MDP

One of the first things to notice when looking at the Flatland environment is that trains have often no choice
but to go straight on (Figure 3). Railway networks are almost always sparse: cities have a lot of rails coming in
and out, but the rails between cities are usually few. Decisions are made at switches, where trains can change
direction and choose a different path. This is the reason why we decided to model the railway network, and
consequently the environment, as a directed multigraph, as we will show in the next sections. In this formulation,
agents are associated with nodes of the network, and they are prompted to make a decision whenever a train
arrives at a node they are controlling.
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6.5.1 Multigraph representation of the environment

The railway network of the Flatland environment can be modelled as a directed multigraph, where nodes
correspond to railway switches and edges correspond to railway segments connecting two consecutive nodes.
Nodes are the only points where trains can change direction, therefore they are the only points where agents
can make decisions, while edges are decisionless segments where trains can only move forward. The choice
of multigraphs instead of simple graphs is justified by the fact that there may exist multiple different tracks
connecting two switches, that occupy different positions in the map, and they need to be treated differently
even if they have the same source and destination nodes. This model of the environment is formulated in order
to satisfy the following desirable properties:

1. Nodes should have more than one outgoing edge. Nodes with only one outgoing edge would have no choice
to make on the available transitions as they are forced to send trains in the only available direction. It’s
desirable to associate a decision-making agent to each node, therefore every node must have at least two
outgoing edges.

2. Nodes should have no more than two outgoing edges. This property is desirable because, combined with
property 1, it implies a fixed size action space for each agent. While actions may have different meanings
for different nodes, every node should have the same number of choices as this would greatly simplify
both the formulation of the MDP and the implementation of the agents.

Keeping these properties in mind, let’s define how the multigraph is generated.
Given a Flatland environment with grid width w and grid height h, define the following sets:

W := {0, 1, . . . , w − 1}
H := {0, 1, . . . , h− 1}
D := {0, 1, 2, 3}

In Flatland, given a train going through a switch at position (i, j) and orientation d, there are at most 2 available
transitions, that means that

∑
d′∈D Tij

dd′ ≤ 2. The multigraph G = (N,E) is defined as follows:

N := {(i, j, d) ∈W ×H ×D |
∑
d′∈D

Tij
dd′ = 2}

E := {((i, j, d), (i′, j′, d′), l) ∈ N ×N × {0, 1} | g(i, j, d, l) = (i′, j′, d′)}
where g is a function that takes as input the node information (row, column, orientation) and a binary label,
and returns the information about the closest neighbor following the first available direction if the label is 0,
and the second available direction if the label is 1.
A multigraph built in this way satisfies both the properties formulated above.
The algorithm to implement multigraph generation is reported below.

Algorithm 2 Multigraph generation

N ← {(i, j, d) ∈W ×H ×D |
∑

d′∈D Tij
dd′ ≥ 1}

E ← {((i, j, d), (i′, j′, d′)) ∈ (N ×N) | (d, d′) ∈ Tij ∧ d′ leads to cell (i′, j′)}
while ∃n̄ ∈ N such that |{(n, n′) ∈ E | n = n̄}| = 1 do

Pick any node n̄ ∈ N such that |{(n, n′) ∈ E | n = n̄}| = 1
Define the set Ein := {(n, n′) ∈ E | n′ = n̄} of incoming edges
Define the successor node n̄′ such that (n̄, n̄′) ∈ E
for each (nprev, n̄) ∈ Ein do
E ← E \ {(nprev, n̄)}
E ← E ∪ {(nprev, n̄

′)}
end for
E ← E \ {(n̄, n̄′)}
N ← N \ {n̄}

end while
return N,E

6.5.2 MDP Formulation

Now that we have defined the multigraph representation of the railway network, we can proceed with the
formulation of the MDP. Given a railway network with m nodes, we define the local node observation. The
local node observation is a vector

[
ξ τ β0 β1

]T where:
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• ξ ∈ {0, 1, 2, . . . , k − 1} is the id of the target station of the train currently stepping on the node, where k
is the number of target stations in the environment. A train is said to be stepping on a node if it shares
the same row, column and orientation of the node.

• τ ∈ {0, 1, 2, . . . , τmax − 1} is the current delay of the train stepping on the node, discretized in τmax
intervals.

• β0 ∈ F is a flag for the outgoing edge with label 0.
• β1 ∈ F is a flag for the outgoing edge with label 1.

The set of flags F may provide useful information about what is happening in an edge. In a simple formulation
we may choose F = {0, 1}, where 0 means that the edge is free, and 1 means that the edge is occupied by a
train. In a more complex formulation, F may contain more information, such as the number of trains on the
edge, the speed of the trains, the direction of the trains, etc. There are just 3 types of action for each node:

• Action 0: send the train in the direction of the outgoing edge with label 0.
• Action 1: send the train in the direction of the outgoing edge with label 1.
• Action 2: keep the train in the node (stop action).

The reward function we crafted is different from the one in the Flatland environment, as it is designed to take
into account multiple factors and to be less sparse, in order to make training easier.

• The delay component penalizes the agent for increasing the delay of a train.

delay(s, a, s′) :=
m∑
j=1

τ(s)− τ(s′)

We noticed that penalizing the agent for increasing the delay of a train speeds up the learning process.

• The collision component penalizes the agent for causing a collision with another train.

collision(s, a, s′) :=

{
−collision penalty if action caused a collision
0 otherwise

• The target component rewards the agent for sending the train to its target station.

target(s, a, s′) :=

{
target reward if action caused a train to reach its target station
0 otherwise

The reward function is defined as:

r(s, a, s′) := delay(s, a, s′) + collision(s, a, s′) + target(s, a, s′)

The discount factor γ is set to 1, as the environment is episodic and the maximum episode length is fixed. An
episode terminates when all trains have arrived to their destination or when a collision occurs. There will be
a more in-depth discussion about collisions in the next sections. When trains are not stepping on nodes, they
move forward by default, as no decision is needed outside nodes, and trains cannot change direction in the
middle of a segment.

7. Experiments and results

7.1. An environment without malfunctions

The following results are obtained by simulating the distributed Q-learning algorithm on an environment without
malfunctions, with a 40× 40 grid and 4 stations, as shown in Figure 5. We generate schedules with 5 trains.
For this experiment, we use a 3-buckets discretization for the delay τ :

τ =


0 if train is on time
1 if delay is less than 20% of the expected travel time of the train
2 if delay is more than 20% of the expected travel time of the train

We define the flags set F = {0, 1}, and:

βj :=

{
0 if there are no trains coming in the node’s direction in the edge with label j
1 if there is at least a train coming in the node’s direction in the edge with label j
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Figure 5: Flatland 40× 40 environment.

The size of the state space for each agent in this specific case is:

|S| = 4︸︷︷︸
number of stations

× 3︸︷︷︸
number of delay buckets

× 2︸︷︷︸
number of flags

× 2︸︷︷︸
number of flags

= 48

which is very small and manageable.
We also set:

collision penalty = 200

target reward = 200

The hyperparameters ϵ and α decay exponentially according to the formula:

ϵ(t) := ϵ0 · ϵtd

α(t) := α0 · αt
d

various decay rates are plotted in Figure 6.

Figure 6: Various decay rates for α and ϵ.

We tried different hyperparameter configurations, and we show the training reward plots for the most promising
ones in Figure 7.
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Figure 7: Training rewards for different hyperparameter configurations. Moving average over 7000
episodes.

Looks like the agents are able to learn a good policy in this environment, as there are hyperparameter con-
figurations that are able to reach high rewards after seeing ≈ 2 · 105 episodes. In order to estimate how good
this result is, we can measure the performance of the agents using the trains on time metric, which counts the
number of trains arrived on time. In our environment with 5 trains, the upper bound of this metric is 5. As we
can see in Figure 8, the best performing hyperparameter configurations in terms of rewards are also the best
performing in terms of the trains on time metric.

Figure 8: Number of trains arrived on time for different hyperparameter configurations. Moving
average over 60000 episodes.

In the next sections we will gradually introduce malfunctions, and we will see how the agents are still able to
learn a good policy unless the malfunction rates are extreme. In Figure 9, we show how the normalized errors
of the q-values of each node with respect to the final q-values converge during training.

7.2. Dealing with deadlocks

Flatland’s railway network environments are very sparse, just like the ones in the real world. By sparse we
mean that there are clusters of nodes that are densely connected to each other inside cities, but these clusters
are connected by a few edges to other clusters. In the real world, this is due to the fact that cities often have
a central station where all the trains coming from the surrounding areas converge, and then they split again
to reach their final destinations. It’s not uncommon that two cities are connected by just a single railway line.
What would happen if two trains are going towards each other on a single-track line? We call that situation
a deadlock, because in Flatland trains stop at the point where they collide and they never move again until
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the end of the episode, making the railway line unusable. This problem becomes impossible to solve in a pure
multi-agent setting, as the agents have no idea of what the other agents are about to do, as they are not able
to communicate their intentions to each other. Even if that kind of communication was possible, the agents
would need some kind of protocol to decide which train has the right of way. This problem is very similar
to the problem of simultaneous access to a shared resource in computer science, and a possible solution could
be the same used in computer science: the use of locks. We could segment the railway network into critical
sections, and associate a shared lock to each segment. A centralized entity would be in charge of managing the
locks, and the trains would wait for the lock to be released before entering a critical section. In modern railway
networks this is implemented by the use of signals, which are placed along the railway line and are controlled
by a centralized entity, the railway traffic controller. This centralized entity would be transparent to the agents
operating the nodes of the network, as the agent can act independently from the signals, but the signals will
prevent trains from entering a critical section if there is another train already there. Therefore, from the point
of view of the agents, locks would be just part of the environment. In this work our focus is on building a
decentralized, multi-agent system that is able to learn how to operate a railway network, hence we will not
consider the introduction of such a centralized entity, but if one wants to deploy a similar system in a real-world
scenario, the introduction of a deadlock prevention mechanism is a must.
Anyway in the previous experiment we can notice how the agents are able to avoid deadlocks in the simple case
of a malfunctions-free environment, as the flags β0 and β1 are informative enough for the agents to understand
if there is the possibility of a deadlock associated with the corresponding edge.
On the other hand in the following sections we will deal with mulfunctions. Malfunctions can create unpre-
dictable situations where the observation of the agents alone is not enough to prevent deadlocks, thus degrading
the performance of the agents. Anyway we will show that in non-extreme cases the agents are still able to learn
a good policy, even in the presence of malfunctions.

7.3. Introducing malfunctions

We will test our implementation on the same environment shown in Figure 5, but this time we will introduce
malfunctions.
As it often happens in real railway network schedules, Flatland train schedule generation algorithm does not
only take into account the time that is needed for a train to reach its destination following the shortest path,
but it also takes into account the time that may be lost due to trains having to wait for other trains to clear
the way. This is done to avoid generating unfeasible schedules, where it does not exist a solution that allows all
trains to reach their destination on time.
Taking this into account, we created 4 different malfunction configurations, each one characterized by a different
malfunction rate and duration. As explained in Subsection 6.2, there are 3 parameters that define a malfunction
configuration:

1. The malfunction rate, λ, which is the probability that a train will have a malfunction at each time step
in the Flatland environment.

2. The malfunction minimum duration, dmin, which is the minimum number of time steps that a train will
have to wait before the malfunction is resolved.

3. The malfunction maximum duration, dmax, which is the maximum number of time steps that a train will
have to wait before the malfunction is resolved.

We choose as malfunction rates λ ∈ {0.001, 0.005}, which means that on average a train will have a malfunction
every 1000 or 200 time steps, respectively.
As durations we choose (dmin, dmax) ∈ {(5, 15), (15, 30)}. These durations are not chosen randomly, as 30 is
exactly the margin of time that the Flatland enviroment gives to the trains to reach their destination, in addition
to the shortest path time, for this specific environment configuration. These parameters allow us to create 4
different malfunction configurations, which span from the least to the most extreme case, as shown in table 1.

Configuration λ dmin dmax
easy 0.001 5 15

normal 0.001 15 30
hard 0.005 5 15

extreme 0.005 15 30

Table 1: Malfunction configurations.

The results of our distributed Q-Learning algorithm, applied to the Flatland environment with the 4 different
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malfunction configurations, are shown in Figure 10.
As we can see, in the easy and normal configurations agents are able to react to malfunctions and learn a good
policy, minimizing the number of deadlocks as they learn and consistently being able to achieve the maximum
number of trains arrived on time. In the hard configuration agents are still able to learn, but the number of
deadlocks increases, as the agents are no more capable of preventing all of them. In the extreme configuration
agents are not able to learn a good policy anymore, as the number of deadlocks is too high, mainly beacuse the
high number of malfunctions contributes to clustering a high number of trains in a small portion of the network,
making it nearly impossible for the agents to recover from the situation, and even in the few cases they are able
to recover, they rarely manage to make trains arrive on time.

Figure 9: Node errors over the training process.

8. Conclusions

In this work we have shown how to model a Markov Decision Process around a graph-based problem, based on the
assumption that nodes are decision points and edges are the connections between them, along which the effects
of the decisions propagate. We proposed a scalable, distributed version of the Q-Learning algorithm, specifically
adapted to this class of problems, which allows agents to learn independently with a minimal communication
framework between neighbor nodes. Finally, we applied our algorithm to the Train Dispatching Problem using
the Flatland simulator, and we showed how the agents are able to learn an empirically optimal policy, even
in the presence of malfunctions, unless the malfunction configurations are too extreme. Our objective was to
prove that a multi-agent approach would be viable even with an extremely simple observation and almost no
external coordination among agents. It is very likely that a deeper local node observation would achieve even
better results, despite the growth of the state space, as agents would be more aware of the local dynamics of
the network, and they could become better at preventing deadlocks. Also we assumed that the partitioning of
the network had to be done by assigning just one node to each partition. In the case of a generic partitioning of
the network agents may control a subset of nodes, and not just one node. In this direction, some work has been
done in the field of finding the optimal decomposition of an MDP on power grids (Losapio et al., 2024) [12],
and it may be worth investigating if it is possible to apply these techniques to find the optimal partitioning of
a railway network. Moreover, some techniques may be used to improve training speed and stability, such as the
use of a replay buffer, which would allow agents to use past experience as well as new experience to make more
stable updates to the Q-tables.
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Figure 10: Training performance for the 4 different malfunction configurations.
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Abstract in lingua italiana

L’ efficiente gestione in tempo reale di sistemi basati su reti è una sfida critica in diversi settori. Approcci
basati su ottimizzazione hanno mostrato risultati promettenti, in quanto riescono a trovare soluzioni ottimali,
pianificando le azioni da intraprendere nel futuro. Tuttavia, questo tipo di approccio richiede il ricalcolo della
soluzione ogniqualvolta eventi imprevedibili stravolgono la pianificazione originaria. Ciò può diventare imprati-
cabile quando si ha a che fare con requisiti temporali stringenti e istanze molto grandi del problema. In questo
lavoro si propone una formulazione di un Markov Decision Process, strettamente legata alla naturale struttura
a grafo di problemi appartenenti a questa classe, con un’attenzione specifica al problema della gestione del
traffico ferroviario in tempo reale; pur tuttavia, non mancheranno brevi riferimenti ad altri possibili campi
di applicazione. Successivamente, si propone un approccio di Reinforcement Learning distribuito, basato su
Q-Learning, dove gli agenti vengono associati ai nodi del grafo, e si mostra come, in un ambiente ferroviario
simulato, siano capaci di apprendere delle policy empiricamente ottimali, agendo indipendentemente gli uni
dagli altri e limitandosi a comunicare soltanto con i loro diretti successori nella rete, persino in presenza di
eventi imprevedibili come malfunzionamenti.

Parole chiave: Multi-Agent Reinforcement Learning, Sistemi Distribuiti, Gestione di Reti Ferroviarie
in Tempo Reale
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