
Executive Summary of the Thesis

Distributed Reinforcement Learning for Large-Scale Networks

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Author: Giacomo Cartechini

Advisor: Prof. Marcello Restelli

Co-advisors: Gianvito Losapio, Alberto Maria Metelli, Marco Mussi

Academic year: 2023-2024

1. Introduction
As the demand for real-time, scalable and effi-
cient techniques to manage network-based sys-
tems grows, graph-based problems are becom-
ing increasingly interesting both to the research
community and to the industry. In this work, by
graph-based problems, or network-based prob-
lems, we refer to a wide class of problems where
the environment can be represented by a graph,
where nodes represent decision points and edges
represent connections between decision points,
along which the effects of the decisions propa-
gate. Such problems include the Train Dispatch-
ing Problem in railway networks [2], where the
goal is to react to real-time events that disrupt
a predefined schedule, and act in order to min-
imize the overall delay of the network, or prob-
lems like the operation of a power grid in real
time, or the dispatchment of a fleet of trucks
with the goal of delivering goods in a urban
environment. We will first propose a general
model of such problems, where we will build a
Markov Decision Process formulation which is
tightly related to the underlying graph struc-
ture of the environment. We will then propose
a distributed Reinforcement Learning algorithm
based on Q-Learning [4] to solve it. The algo-
rithm allows different agents to learn indepen-

dently and asynchronously while exchanging a
minimum amount of information between them.
Finally we apply our algorithm to solve the Train
Dispatching Problem in a simulated benchmark
environment, and we show that the agents are
able to learn an empirically good policy, even
when there are events such as malfunctions that
disrupt the normal operation of the network, un-
less such events are too extreme to be handled.

2. Problem Formulation
We start from a general model of a network-
based system and we model it as a directed
graph. We denote the graph as G = (V,E),
where V is the set of nodes and E is the set of
edges. In this graph nodes correspond to the de-
cision points of the environment we are operat-
ing in. For instance, if we were to operate a rail-
way network, the nodes may correspond to net-
work switches, and each possible decision may
represent the specific track that a train should
be routed to. If we were to operate a power
grid, we could choose as decision points all the
active elements of the grid, for example power
stations, and we could model as decisions the
amount of power that each station should pro-
duce. Edges represent the connections between
decision points, and should be modelled in such

1

Executive summary Giacomo Cartechini

a way that the decisions taken at one node affect
the state of the nodes connected to it. If there
is no way the decision of a node can affect the
state of another node, then there also should not
exist an edge connecting them. Starting from
this graph formulation, we want to deploy a Re-
inforcement Learning agent at each node, that
will be responsible of controlling it in order to
achieve a global objective in the network. Each
agent can observe the state of the network up
to a certain depth from its node, which we will
call the observation depth, d, of the agent. A
larger observation depth allows agents to make
more informed decisions, but also increases the
complexity of the problem. The state space of
the MDP associated to each agent is then de-
fined as the set of all possible observations of
depth d from the node, and the action space is
the set of all possible decisions that the agent
can take at that node. At each time step each
agent makes an observation, takes an action ac-
cording to its policy, and receives a reward from
the environment. The reward function is entirely
problem dependent, but a few guidelines can be
given to design it. As the agents are only able
to observe part of the network, the reward is
the only insight they have on the global objec-
tive, therefore it should be designed in such a
way that if each agent is able to maximize its
own reward function, then the global objective
is somehow maximized as well. In the example of
the Train Dispatching Problem, we would like to
minimize the total delay of the network, there-
fore a possible reward function for each agent
could be the increase of delay of the trains that
have been recently routed from its node. Under
the assumption that we use in this work, that
is that decisions taken at a node immediately
affect only nodes connected to them (and only
later the consequences of their decisions propa-
gate to the rest of the network), we can assume
that even if the reward function is only based
on local information, it can still be informative
enough to learn a good policy. We will later
show that this assumption holds in the experi-
ments we conducted, as agents are able to learn
an empirically optimal policy by acting locally
and observing local effects of their decisions.

3. Q-Learning on graphs
We now propose a distributed version of the Q-
Learning algorithm [4], specifically adapted for
problems that can be formulated as we described
in the previous section. The algorithm is based
on the Q-Learning algorithm, which updates the
q-value estimates of the agent at each time step,
by following the rule:

q(s, a)← (1− α)q(s, a) + α(r + γmax
a′

q(s′, a′))

where s is the current state observed by the
agent, a is the action taken, r is the reward re-
ceived, s′ is the next state, α is the learning
rate, and γ is the discount factor of the prob-
lem. Since we are in a multi-agent setting, where
there is an agent controlling each different node
of the network, we need to adapt the Q-Learning
algorithm to allow agents to learn the effects of
their decisions on their neighbors. Recall that it
is possible to estimate the value function v of an
agent given its Q-table as:

v(s) = max
a

q(s, a) (1)

Let n ∈ V be a generic node of the graph, and
let Fn = {n1, n2, . . . , n|Fn|} be the set of nodes
such that (n, n′) ∈ E, ∀n′ ∈ Fn, that is the set
of successors of node n in the network.
Decisions taken at node n affect the future state
of all its successors, and we can use the value
function estimate of the agents controlling nodes
in Fn to estimate the update of the Q-values of
the agent at node n.
Therefore, the update rule of the Q-values of
agent controlling node n becomes:

qn(s, a)←(1− α)qn(s, a)+

α

r + γ

|Fn|∑
i=1

wni(at) · vni(s
′
ni
)


By applying equation 1 to the update rule, we
obtain:

qn(s, a)←(1− α)qn(s, a)+

α

r + γ

|Fn|∑
i=1

wni(at) ·max
a′

qni(s
′
ni
, a′)


That is, agent controlling node n will use a
weighted average of the value function estimates

2

Executive summary Giacomo Cartechini

of the future states observed by the agents con-
trolling nodes in Fn, instead of using its own
estimate to update of its Q-table. The weights
wni are action-dependent and normalized, but
most importantly they are not hyperparameters
to be tuned, but they are determined by the
problem at hand. Their use is to give more or
less importance to successors of node n basing
on how much actions taken at node n affect the
future observation of each specific node ni ∈ Fn.
Take for example the Train Dispatching Prob-
lem, where nodes model switches in the rail-
way network, and edges model the tracks con-
necting the switches. If a train is to be routed
from the switch represented by node n to switch
represented by node n′, the the weight associ-
ated to n′, wn′ , should be 1, and all the other
weights should be 0. That is because the de-
cision taken at n does not have direct conse-
quences on other switches of the network, but
only on the switch receiving the train. Con-
versely, in the case of power grid management, if
we assume that nodes are power plants, and ac-
tions correspond to increasing or decreasing the
power produced by the plant, then the weights
associated to the nodes connected to the plant
should be all equal, as the decision taken at the
plant affects all the nodes connected to it in the
same way, increasing the amount of power prop-
agating from the plant to the neighbors.
This update formula has a very special mean-
ing, since we are assuming that agents control-
ling successor nodes are able to provide a better
estimate of the value function of the next state
than the agent controlling the node itself. In
problems belonging to the class we are consid-
ering, this assumption makes much sense, since
the neighbors are the ones that are truly expe-
riencing the consequences of previous decisions,
and by propagating back the estimates of their
value functions we are allowing information to
flow backwards through the network, allowing
agents to learn the long-term effects of their de-
cisions even if they are not able to experience
them by direct observation. By doing so, we give
agents no responsibility about decisions made in
the past, but they are fully accountable for the
decisions they are taking now, since their ac-
tions will have direct consequences on the future
states observed by their neighbors, and positive
or negative effects will be reflected in the value

function estimates of the neighbors, which are
then propagated back to the agent itself in or-
der to update its Q-values.

4. The Train Dispatching Prob-
lem

As a testbed for our algorithm, we solve the
Train Dispatching Problem in the simulated en-
vironment provided by the Flatland simulator
[1]. The Flatland simulator provides us with a
grid-like environment, as the one shown in Fig-
ure 1.

Figure 1: A snapshot of the Flatland environ-
ment.

At environment creation, the simulator gener-
ates an earliest departure and latest arrival time
for each train. Our goal is to guide the trains
from their starting position to their target sta-
tion minimizing their delay.
First of all, we build a graph representation
of the environment, where nodes represent rail-
way switches and edges represent tracks con-
necting different switches. Our goal is to deploy
a decision-making agent at each switch, that will
be responsible of routing the trains stepping on
the switch at its discretion in order to minimize
the overall delay of the network. Each agent can
observe the state of the network up to a certain
depth d from the node, for our experiments we
will set d = 1. We prefer to keep the observation
space as small as possible in order to understand
if agents can still learn given the limited amount

3

Executive summary Giacomo Cartechini

of information they can observe. The observa-
tion vector s of each agent will be:

s =
[
ξ τ β0 β1

]
where ξ is the identifier of the target station of
the train currently stepping on the switch, τ is
the discretized delay of the train, and β0 and
β1 are binary flags indicating if there is a train
coming towards the switch in the correspond-
ing outgoing track. In Flatland, given a specific
train orientation, a switch can at most route a
train to two different tracks due to the way the
different topologies of switches implemented.
As we can see from Figure 2, for any type of
switch, a train has at most two possible direc-
tions to go, therefore the action space of each
agent is set to be of size 3: the agent can route
the train to the left track, to the right track or
stop the train (for some orientations trains have
no choice other than moving forward, in that
case no agent the corresponding node does not
even exist in the graph). Trains that have no
choice but to move forward, move forward by
default.
The action space of each agent is therefore al-
ways of size 3: any agent can either route the
train to the left track, to the right track, or stop
the train. The reward function is designed in
such a way that agents are rewarded negatively
for increasing the delay of the trains or for caus-
ing collisions, and positively for sending trains
to target stations. It is made of 3 components:
• The delay component, which penalizes

agents for increasing the delay of the trains.

delay(s, s′) = τ(s)− τ(s′)

• The target component, which rewards
agents for sending trains to their target sta-
tions. In the experiments we conducted, we
set the this reward to be +200.

target(s, s′) =

{
200 if train sent to target
0 otherwise

• The collision component, which penal-
izes agents for causing collisions between
trains. In the experiments we conducted,
we set this reward to be −200.

collision(s, s′) =

{
−200 if collision
0 otherwise

The total reward for each transition is then the
sum of the three components:

r(s, s′) = delay(s, s′)+target(s, s′)+collision(s, s′)

5. Experiments
We first test our algorithm on an environment
without malfunctions, with a 40 × 40 grid with
4 stations like the one shown in Figure 1. We
generate schedules with 5 trains. The discount
factor of the problem is γ = 1, since the en-
vironment is episodic and there is a maximum
(high and fixed) number of steps after which the
episode is terminated. The cumulative rewards
of the agents during training are shown in Figure
3.
As we can see, agents are able to reach high
rewards, but to really understand what is going
on we need to use the trains on time metric.
This metric counts the total number of trains
arrived on time at their target station at each
episode of training. The corresponding plots for
this metric are shown in Figure 4.

5.1. Dealing with deadlocks
Flatland’s railway networks are sparse, resem-
bling real-world railways, where dense city clus-
ters are connected by a few edges. Deadlocks
occur when two trains collide on single-track
lines, rendering the track unusable. In central-
ized systems, such issues are mitigated using
signals managed by a traffic controller. How-
ever, this work focuses on decentralized multi-
agent systems, and we will not implement such
mechanisms. Right now, agents avoid deadlocks
in malfunction-free scenarios using informative
flags β0 and β1. In the next experiments we
introduce malfunctions. As we will see, mal-
functions create unpredictable situations, where
observations alone may not suffice to prevent
deadlocks, reducing agent performance. Despite
these challenges, agents can still learn effective
policies in non-extreme malfunction scenarios,
demonstrating robust adaptability.

5.2. Introducing malfunctions
In Flatland, malfunctions are random events
that can be configured by 3 parameters:
• The malfunction rate, λ, that is the av-

erage number of malfunctions of a train at
each time step. The number of malfunction

4

Executive summary Giacomo Cartechini

Figure 2: The different types of switches implemented in Flatland.

Figure 3: Cumulative rewards of the agents dur-
ing training in an environment without malfunc-
tions. Different training parameters are shown,
the starting ϵ is always 1.0. Moving average over
5000 episodes.

Figure 4: Number of trains arrived at their tar-
get station on time at each episode of training
in an environment without malfunctions. Same
hyperparameters as in Figure 3. Moving average
over 60000 episodes.

of a train is defined by a Poisson distribu-
tion with parameter λ, Pois(λ).
• The minimum duration, dmin, and max-

imum duration, dmax, of a malfunction
event, that are the minimum and maximum
number of time steps a train will be blocked
by a malfunction. The duration of a mal-
function is defined by a uniform distribution
between the two parameters, U(dmin, dmax).

We will test our algorithm on the same envi-
ronment as the previous experiment, but with
different malfunction configurations, from the
lightest to the most severe one, which are shown
in Table 1.

Configuration λ dmin dmax
easy 0.001 5 15

normal 0.001 15 30
hard 0.005 5 15

extreme 0.005 15 30

Table 1: Malfunction configurations.

The results are shown on the plots of Figure 5.
As we can see, in the easy and normal config-
urations agents are able to react to malfunc-
tions and learn a good policy, minimizing the
number of deadlocks as they learn and consis-
tently being able to achieve the maximum num-
ber of trains arrived on time. In the hard con-
figuration agents are still able to learn, but the
number of deadlocks increases, as the agents are
no more capable of preventing all of them. In
the extreme configuration agents are not able to
learn a good policy anymore, as the number of
deadlocks is too high, mainly beacuse the high
number of malfunctions contributes to cluster-
ing a high number of trains in a small portion of
the network, making it nearly impossible for the
agents to recover from the situation, and even
in the few cases they are able to recover, they
rarely manage to make trains arrive on time.

6. Conclusions
In this work, we shown how to model a Markov
Decision Process around a graph-based problem,
based on the assumption that nodes are decision
points and edges are the connections between
them, along which the effects of the decisions
propagate.
We proposed a scalable, distributed version of
the Q-Learning algorithm, specifically adapted
to this class of problems, which allows agents to
learn independently with a minimal communi-
cation framework between neighbor nodes. Fi-
nally, we applied our algorithm to the Train

5

Executive summary Giacomo Cartechini

Figure 5: Training performance for the 4 differ-
ent malfunction configurations of Table 1.

Dispatching Problem using the Flatland simu-
lator, and we showed how the agents are able to
learn an empirically optimal policy, even in the
presence of malfunctions, unless the malfunction
configurations are too extreme. Our objective
was to prove that a multi-agent approach would
be viable even with an extremely simple observa-
tion and almost no external coordination among
agents. It is very likely that a deeper local node
observation would achieve even better results,
despite the growth of the state space, as agents
would be more aware of the local dynamics of the
network, and they could become better at pre-
venting deadlocks. We also assumed that the
partitioning of the network had to be done by
assigning just one node to each partition. In
the case of a generic partitioning of the network
agents may control a subset of nodes, and not
just one node. In this direction, some work has
been done in the field of finding the optimal de-

composition of an MDP on power grids [3], and
it may be worth investigating if it is possible
to apply these techniques to find the optimal
partitioning of a railway network. Moreover,
some techniques may be used to improve train-
ing speed and stability, such as the use of a re-
play buffer, which would allow agents to use past
experience as well as new experience to make
more stable updates to the Q-tables.

References
[1] https://flatland.aicrowd.com/intro.html.

[2] Jing-Quan Li, Pitu B Mirchandani, and De-
nis Borenstein. The vehicle rescheduling
problem: Model and algorithms. Networks
(N. Y.), 50(3):211–229, October 2007.

[3] Gianvito Losapio, Davide Beretta, Marco
Mussi, Alberto Maria Metelli, and Marcello
Restelli. State and action factorization in
power grids. 2024.

[4] Christopher John Cornish Hellaby Watkins.
Learning from delayed rewards. 1989.

6

	Introduction
	Problem Formulation
	Q-Learning on graphs
	The Train Dispatching Problem
	Experiments
	Dealing with deadlocks
	Introducing malfunctions

	Conclusions

